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Abstract. We consider a fractional Adams method for solving the nonlinear fractional differen-

tial equation C
0 D

α
t y(t) = f(t, y(t)), α > 0, equipped with the initial conditions y(k)(0) = y

(k)
0 , k =

0, 1, . . . , dαe − 1. Here α may be an arbitrary positive number and dαe denotes the smallest inte-
ger no less than α and the differential operator is the Caputo derivative. Under the assumption
C
0 D

α
t y ∈ C2[0, T ], Diethelm et al. [8, Theorem 3.2] introduced a fractional Adams method with the

uniform meshes tn = T (n/N), n = 0, 1, 2, . . . , N and proved that this method has the optimal con-
vergence order uniformly in tn, that is O(N−2) if α > 1 and O(N−1−α) if α ≤ 1. They also showed
that if C

0 D
α
t y(t) /∈ C2[0, T ], the optimal convergence order of this method cannot be obtained with

the uniform meshes. However, it is well known that for y ∈ Cm[0, T ] for some m ∈ N and 0 < α < m,
the Caputo fractional derivative C

0 D
α
t y(t) takes the form “C0 D

α
t y(t) = ctdαe−α+smoother terms”[8,

Theorem 2.2], which implies that C
0 D

α
t y behaves as tdαe−α which is not in C2[0, T ]. By using the

graded meshes tn = T (n/N)r, n = 0, 1, 2, . . . , N with some suitable r > 1, we show that the opti-
mal convergence order of this method can be recovered uniformly in tn even if C

0 D
α
t y behaves as

tσ , 0 < σ < 1. Numerical examples are given to show that the numerical results are consistent with
the theoretical results.
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1. Introduction. In this paper, we will consider a numerical method for solving
the following fractional nonlinear differential equation, with α > 0,

(1.1) C
0 D

α
t y(t) = f(t, y(t)), t > 0, y(k)(0) = y

(k)
0 , k = 0, 1, . . . , dαe − 1,

where the y
(k)
0 may be arbitrary real numbers and C

0 D
α
t y(t) denotes the Caputo

fractional derivative defined by

(1.2) C
0 D

α
t y(t) =

1

Γ(dαe − α)

∫ t

0

(t− s)dαe−α−1ydαe(s) ds,

where dαe is the smallest integer ≥ α. As usual we demand that the function f is
continuous and fulfills a Lipschitz condition with respect to its second argument with
Lipschitz constant L on a suitable set G. Under these assumptions, Diethelm et al. [7,
Theorems 2.1, 2.2] showed that (1.1) has a unique solution y on some interval [0, T ].

It is well-known that (1.1) is equivalent to [7, Lemma 2.3]

(1.3) y(t) =

dαe−1∑
ν=0

y
(ν)
0

tν

ν!
+

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s)) ds.

Equations of this type arise in a number of applications where models based on
fractional calculus are used, such as viscoelastic materials, anomalous diffusion, signal
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2 FRACTIONAL ADAMS METHODS WITH GRADED MESHES

processing and control theory, etc., see Oldham and Spanier [16], Kilbas et al. [10],
Podlubny [20].

The analytic solution of (1.1) for the general function f is not known. Therefore
we have to apply some numerical methods for solving (1.1). Stability and convergence
of such numerical methods are analyzed under certain smoothness assumptions for the
solutions of (1.1), see, for example, [7], [2], [1], [14], [23], [26], [17], [18], [11].

Most analysis of the numerical methods for solving (1.1) is deduced under the
assumptions that the meshes are uniform, see, for example, [7], [8], [9], [13], [14], [26].
To obtain a higher order numerical method with uniform meshes, the solutions or data
of (1.1) are required to be sufficiently smooth, for example, C

0 D
α
t y ∈ Cm[0, T ],m ≥

2 in [8, Theorem 3.2]. However, as we will see below in Theorem 1.2, although
y ∈ Cm[0, T ] for some m ∈ N, 0 < α < m, the Caputo fractional derivative C

0 D
α
t y

behaves as tdαe−α when ydαe(0) 6= 0, α > 0. Therefore it is interesting to design some
numerical methods which have the optimal convergence orders when C

0 D
α
t y behaves

as tdαe−α, α > 0. Diethelm [4, Theorem 3.1] used the graded meshes to recover
the optimal convergence order for the approximation of the Hadamard finite-part
integral. Recently Stynes et al. [22], [21] applied the graded meshes to recover the
convergence order of the finite difference method for solving a time-fractional diffusion
equation when the solution is not sufficiently smooth. This excellent approach in
[22], [21] allows to obtain a (relatively) high convergence order without the otherwise
required very unnatural smoothness assumptions on the given solution. Other works
for solving fractional differential equations with non-uniform meshes may be found
in, for example, [12], [19], [24], [25].

Motivated by the ideas in Diethelm [4] and Stynes et al. [22] we will introduce
a numerical method for solving (1.1) with the graded meshes and we prove that the
optimal convergence order uniformly in tn for the proposed numerical method can be
recovered when C

0 D
α
t y(t), α > 0 behaves as tσ, 0 < σ < 1.

Before we introduce our numerical method, we recall some well-known smoothness
properties of the solution y of (1.1) under some assumptions of f .

Theorem 1.1. [15, Lubich, 1983, Theorem 2.1]
1. Let α > 0. Assume that f ∈ C2(G). Define v̂ := d 1

αe − 1. Then there exist a
function ψ ∈ C1[0, T ] and some c1, c2, . . . , cν̂ ∈ R such that the solution y of
(1.1) can be expressed in the form

y(t) = ψ(t) + c1t
α + c2t

2α + c3t
3α + · · ·+ cν̂t

ν̂α.

2. Let α > 0. Assume that f ∈ C3(G). Define v̂ := d 2
αe − 1 and ṽ := d 1

αe − 1.
Then there exist a function ψ ∈ C2[0, T ] and some c1, c2, . . . , cν̂ ∈ R and
d1, d2, . . . , dν̃ ∈ R such that the solution y of (1.1) can be expressed in the
form

y(t) = ψ(t) +

ν̂∑
ν=1

cνt
να +

ν̃∑
ν=1

dνt
1+να.

For example, when 0 < α < 1, f ∈ C2(G), we have v̂ = d 1
αe − 1 ≥ 1 and

y = ctα + smoother terms,

which implies that the solution y of (1.1) behaves as tα, 0 < α < 1 when f ∈ C2(G).
Theorem 1.2. [8, Theorem 2.2] If y ∈ Cm[0, T ] for some m ∈ N and 0 < α < m,
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then

C
0 D

α
t y(t) = ϕ(t) +

m−dαe−1∑
l=0

y(l+dαe)(0)

Γ(dαe − α+ l + 1)
tdαe−α+l,

with some function ϕ ∈ Cm−dαe[0, T ]. Moreover, the (m − dαe)th derivative of ϕ
satisfies a Lipschitz condition of order dαe − α.

For example, when 0 < α < 1, y ∈ Cm[0, T ],m ≥ 2,, we have

C
0 D

α
t y(t) = ϕ(t) +

y′(0)

Γ(2− α)
t1−α + smoother terms,

where ϕ ∈ Cm−1[0, T ] which implies that the Caputo fractional derivative C
0 D

α
t y(t), 0 <

α < 1 behaves as t1−α when y′(0) 6= 0. Similarly when 1 < α < 2, y ∈ Cm[0, T ],m ≥
3, we have

C
0 D

α
t y(t) = ϕ(t) +

y′′(0)

Γ(3− α)
t2−α + smoother terms,

where ϕ ∈ Cm−2[0, T ].
In view of Theorems 1.1 and 1.2, we see that smoothness of one of the functions

y and C
0 D

α
t y will imply nonsmoothness of the other unless some special conditions

are fulfilled. Based on Theorems 1.1 and 1.2, we introduce the following assumption.
The similar assumption for the smoothness of the solution u of the time-fractional
diffusion equation are introduced in Stynes et al. [22, Theorem 2.1].

Assumption 1. Let 0 < σ < 1 and let g := C
0 D

α
t y with α > 0. There exists a

constant c > 0 such that

(1.4) |g′(t)| ≤ ctσ−1, |g′′(t)| ≤ ctσ−2.

Remark 1.3. It is easy to see that (1.4) does not imply g ∈ C2[0, T ], but g ∈
C2(0, T ].

Let N be a positive integer and let 0 = t0 < t1 < · · · < tN = T be the graded
meshes on [0, T ] defined by

(1.5) tj = T (j/N)r, j = 0, 1, 2, . . . , N, with r ≥ 1.

For simplicity, we assume that T = 1 in this paper.
Let us now introduce the fractional Adams method with the graded meshes (1.5).

This method has been introduced and analyzed in Diethelm [5, Appendix C] and
Diethelm et al. [8] for the uniform meshes.

Denote yj ≈ y(tj), j = 0, 1, 2, . . . , n + 1 with n = 0, 1, 2, . . . , N − 1, the approxi-
mation of y(tj), we define the following predictor-corrector Adams method for solving
(1.3), with α > 0 :

(1.6)

yPn+1 =

dαe−1∑
ν=0

y
(ν)
0

tn+1

ν!
+

1

Γ(α)

n∑
j=0

bj,n+1f(tj , yj),

yn+1 =

dαe−1∑
ν=0

y
(ν)
0

tn+1

ν!
+

1

Γ(α)

( n∑
j=0

aj,n+1f(tj , yj) + an+1,n+1f(tn+1, y
P
n+1)

)
,

y
(ν)
0 is given,
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where the weights bj,n+1, j = 0, 1, 2, . . . , n satisfy

(1.7) bj,n+1 =
N−rα

α

(
((n+ 1)r − jr)α − ((n+ 1)r − (j + 1)r)α

)
,

and the weights aj,n+1, j = 0, 1, 2, . . . , n+ 1 satisfy

(1.8)

a0,n+1 =
N−rα

α(1 + α)

(
(n+ 1)rα(α+ 1) + ((n+ 1)r − 1)α+1 − (n+ 1)r(α+1)

)
,

aj,n+1 =
N−rα

α(1 + α)

( [(n+ 1)r − (j − 1)r]α+1 − [(n+ 1)r − jr]α+1

jr − (j − 1)r

+
[(n+ 1)r − (j + 1)r]α+1 − [(n+ 1)r − jr]α+1

(j + 1)r − jr
)
, j = 1, 2, . . . , n,

an+1,n+1 =
N−rα

α(1 + α)

(
(n+ 1)r − nr

)α
.

The predictor term yPn+1 in (1.6) is obtained by approximating the integral
∫ tn+1

0
(tn+1−

s)α−1f(s, y(s)) ds in (1.3) with
∫ tn+1

0
(tn+1 − s)α−1P0(s) ds, where P0(s) is the piece-

wise constant function defined on [0, tn+1], i.e.,

P0(s) = f(tj , y(tj)), s ∈ [tj , tj+1], j = 0, 1, 2, . . . , n.

Similarly, the corrector term yn+1 in (1.6) is obtained by approximating the integral∫ tn+1

0
(tn+1− s)α−1f(s, y(s)) ds in (1.3) with

∫ tn+1

0
(tn+1− s)α−1P1(s) ds, where P1(s)

is the piecewise linear function defined on [0, tn+1], i.e.,

P1(s) =
s− tj+1

tj − tj+1
f(tj , y(tj))+

s− tj
tj+1 − tj

f(tj+1, y(tj+1)), s ∈ [tj , tj+1], j = 0, 1, 2, . . . , n.

We remark that when r = 1, the weights in (1.8) reduce to the weights in Diethelm
et al. [8, (1.14)] with the uniform meshes.

Under the assumption that g(t) := C
0 D

α
t y(t) ∈ C2[0, T ] and r = 1 ( i.e., uniform

meshes), Diethelm et al. [8] proved the following error estimates, i.e. [8, Theorem
3.2]:

Theorem 1.4. Let α > 0 and assume that g := C
0 D

α
t y ∈ C2[0, T ] for some

suitable T . Assume that y(tj) and yj are the solutions of (1.3) and (1.6), respectively.
Let r = 1 (uniform meshes). Then

max
0≤j≤N

|y(tj)− yj | ≤

{
CN−(1+α), if 0 < α ≤ 1,

CN−2, if α > 1.

In this work, under the Assumption 1, and r > 1, we shall prove the following
error estimates:

Theorem 1.5. Let α > 0 and assume that g := C
0 D

α
t y satisfies Assumption 1.

1. If 0 < α ≤ 1, assume that y(tj) and yj are the solutions of (1.3) and (1.6),
respectively, then we have

max
0≤j≤N

|y(tj)− yj | ≤


CN−r(σ+α), if r(α+ σ) < 1 + α,

CN−r(σ+α) ln(N), if r(α+ σ) = 1 + α,

CN−(1+α), if r(α+ σ) > 1 + α.
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2. If α > 1, then we have

max
0≤j≤N

|y(tj)− yj | ≤


CN−r(1+σ), if r(1 + σ) < 2,

CN−2 ln(N), if r(1 + σ) = 2,

CN−2, if r(1 + σ) > 2.

Remark 1.6. By Theorem 1.1, assume that f ∈ Cm(G),m ≥ 2 and α ∈ (0, 1),
then, with some constants c1, c2, . . . , cν̂ ∈ R,

y = c1t
α + c2t

2α + · · ·+ cν̂t
ν̂α + smoother terms,

which implies that, with some constants d1, d2, . . . , dν̂ ∈ R,

g : = C
0 D

α
t y = d1t

α−α + d2t
2α−α + · · ·+ dν̂t

ν̂α−α + smoother terms

= d1 + d2t
α + · · ·+ dν̂t

(ν̂−1)α + smoother terms.

We see g := C
0 D

α
t y behaves as c + ctα, therefore we may apply Theorem 1.5 with

σ = α in this case.
Remark 1.7. If one uses M corrector iterations instead of just one, the order in

Theorem 1.5 can be improved to O(N−min{2,1+Mα}), see Diethelm [6].
Remark 1.8. The modification of the basic Adams-Bashforth-Moulton method

suggested by Deng [3] for the case of a uniform grid can be applied for the graded mesh
used in this paper as well. This should lead to a reduction of the computational cost
without an increased error.

We remark that the optimal convergence order O(N−min(1+α,2)), α > 0 obtained
in Theorem 1.4 for the numerical method (1.6) for the smooth g with the uniform
meshes with r = 1 can be recovered in Theorem 1.5 for the nonsmooth g with the
graded meshes (1.5) with r > 1.

The paper is organized as follows. In Section 1 we introduce the predictor-
corrector method for solving (1.1) with the graded meshes. In Section 2, we prove
our main result Theorem 1.5. Finally in Section 3, we give some numerical examples
which show that the numerical results are consistent with the theoretical results.

Throughout, the notations C and c, with or without a subscript, denote generic
constants, which may differ at different occurrences, but are always independent of
the mesh size.

2. Proof of Theorem 1.5. In this section, we will give the proof of Theorem
1.5. To do this, we need some preliminary lemmas.

Lemma 2.1. Let α > 0. Assume that g satisfies Assumption 1.
1. If 0 < α ≤ 1, then

∣∣∣ ∫ tn+1

0

(tn+1− s)α−1
(
g(s)−P1(s)

)
ds
∣∣∣ ≤


CN−r(α+σ), if r(α+ σ) < 2,

CN−2 ln(N), if r(α+ σ) = 2,

CN−2, if r(α+ σ) > 2.

2. If α > 1, then

∣∣∣ ∫ tn+1

0

(tn+1− s)α−1
(
g(s)−P1(s)

)
ds
∣∣∣ ≤


CN−r(1+σ), if r(1 + σ) < 2,

CN−2 ln(N), if r(1 + σ) = 2,

CN−2, if r(1 + σ) > 2,
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where P1(s) is the piecewise linear function defined by, with j = 0, 1, 2, . . . , n,

P1(s) =
s− tj+1

tj − tj+1
g(tj) +

s− tj
tj+1 − tj

g(tj+1), s ∈ [tj , tj+1].

Proof. Note that, with n = 0, 1, 2, . . . , N − 1,∫ tn+1

0

(tn+1 − s)α−1
(
g(s)− P1(s)

)
ds

=
(∫ t1

0

+

n−1∑
j=1

∫ tj+1

tj

+

∫ tn+1

tn

)
(tn+1 − s)α−1

(
g(s)− P1(s)

)
ds

= I1 + I2 + I3.

For I1, we have, by Assumption 1,

I1 =
1

Γ(α)

∣∣∣ ∫ t1

0

(tn+1 − s)α−1
[s− t1
−t1

∫ s

0

g′(τ) dτ − s

t1

∫ t1

s

g′(τ) dτ
]
ds
∣∣∣

≤ C
∫ t1

0

(tn+1 − s)α−1sσ ds+ C

∫ t1

0

(tn+1 − s)α−1tσ1 ds.

Note that there exists a constant c > 0 such that

tn+1 ≥ tn+1 − t1 ≥ ctn+1, n = 1, 2, . . . , N − 1,

which follows from

1 ≤ tn+1

tn+1 − t1
=

(n+1
N )r

(n+1
N )r − ( 1

N )r
= 1 +

1

(n+ 1)r − 1
≤ 1 +

1

2r − 1
≤ C.

If 0 < α ≤ 1, then we have

|I1| ≤ C(tn+1 − t1)α−1

∫ t1

0

sσ ds+ C(tn+1 − t1)α−1(t1)σ+1

≤ C(tn+1 − t1)α−1(t1)σ+1 ≤ C(tn+1)α−1(t1)σ+1

≤ C(tn)α−1(t1)σ+1 = C(nr(α−1)N−r(α+σ)) ≤ CN−r(α+σ).(2.1)

If α > 1 , then we have

|I1| ≤ C(tn+1)α−1

∫ t1

0

sσ ds+ C(tn+1)α−1(t1)σ+1

≤ C(tn+1)α−1(t1)σ+1 ≤ C(tn)α−1(t1)σ+1

= C(nr(α−1)N−r(α+σ)) ≤ CN−r(1+σ).(2.2)

For I2, we have, with ξj ∈ (tj , tj+1), j = 1, 2, . . . , n− 1 and n = 2, 3, . . . , N − 1,

|I2| =
∣∣∣ n−1∑
j=1

∫ tj+1

tj

(tn+1 − s)α−1g′′(ξj)(s− tj)(s− tj+1) ds
∣∣∣.
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By Assumption 1 and utilizing Stynes et al. [22, Section 5.2], with n ≥ 4, we have

|I2| ≤ C
∣∣∣ n−1∑
j=1

(tj+1 − tj)2(tj)
σ−2

∫ tj+1

tj

(tn+1 − s)α−1 ds
∣∣∣

≤ C
∣∣∣ dn−1

2 e−1∑
j=1

(tj+1 − tj)2(tj)
σ−2

∫ tj+1

tj

(tn+1 − s)α−1 ds
∣∣∣

+ C
∣∣∣ n−1∑
j=dn−1

2 e

(tj+1 − tj)2(tj)
σ−2

∫ tj+1

tj

(tn+1 − s)α−1 ds
∣∣∣

= I21 + I22,

where dn−1
2 e is the smallest integer ≥ n−1

2 .
For I21, we first consider the case 0 < α ≤ 1, we have, with n ≥ 4,

I21 ≤ C
dn−1

2 e−1∑
j=1

(tj+1 − tj)2(tj)
σ−2(tn+1 − tj+1)α−1(tj+1 − tj)

≤ C
dn−1

2 e−1∑
j=1

(tj+1 − tj)3(tj)
σ−2(tn+1 − tj+1)α−1.

Note that, with ξj ∈ [j, j + 1], j = 1, 2, . . . , dn−1
2 e − 1,

tj+1 − tj = ((j + 1)r − jr)N−r = rξr−1
j N−r ≤ r(j + 1)r−1N−r ≤ Cjr−1N−r,(2.3)

and

(tn+1 − tj+1)α−1 =
( Nr

(n+ 1)r − (j + 1)r

)1−α
≤
( Nr

(n+ 1)r − dn+1
2 er

)1−α

≤ C
(
Nr(n+ 1)−r

)1−α ≤ C(N/n)r(1−α).(2.4)

Thus, with n ≥ 4,

I21 ≤ C
dn−1

2 e−1∑
j=1

(
jr−1N−r

)3
(j/N)r(σ−2)(N/n)r(1−α)

= C

dn−1
2 e−1∑
j=1

jr(α+σ)−3N−r(σ+α)(j/n)r(1−α) = CN−r(σ+α)

dn−1
2 e−1∑
j=1

jr(α+σ)−3.

Case 1, if r(σ + α) < 2, we have

I21 ≤ CN−r(σ+α)

dn−1
2 e−1∑
j=1

jr(σ+α)−3 ≤ CN−r(σ+α).

Case 2, if r(σ + α) = 2, we have

I21 ≤ CN−2

dn−1
2 e−1∑
j=1

j−1 ≤ CN−2
(

1 +
1

2
+ · · ·+ 1

N

)
≤ CN−2 ln(N).
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Case 3, if r(σ + α) > 2, we have

I21 ≤ CN−r(σ+α)

dn−1
2 e−1∑
j=1

jr(σ+α)−3 ≤ CN−r(σ+α)nr(σ+α)−2 = C(n/N)r(σ+α)−2N−2 ≤ CN−2.

Thus we have, with 0 < α ≤ 1,

I21 ≤


CN−r(σ+α), if r(σ + α) < 2,

CN−2 ln(N), if r(σ + α) = 2,

CN−2, if r(σ + α) > 2.

We next consider the case α > 1, we have, with n ≥ 4,

I21 ≤ C
dn−1

2 e−1∑
j=1

(tj+1 − tj)2(tj)
σ−2(tn+1 − tj)α−1(tj+1 − tj)

≤ C
dn−1

2 e−1∑
j=1

(tj+1 − tj)3(tj)
σ−2(tn+1)α−1

≤ C
dn−1

2 e−1∑
j=1

(
jr−1N−r

)3
(j/N)r(σ−2)(n/N)r(α−1)

≤ CN−r−rσ
dn−1

2 e−1∑
j=1

jr(1+σ)−3.

Thus we have, with α > 1,

I21 ≤


CN−r(1+σ), if r(1 + σ) < 2,

CN−2 ln(N), if r(1 + σ) = 2,

CN−2, if r(1 + σ) > 2.

For I22, by (2.3) and noting that, with dn−1
2 e ≤ j ≤ n− 1, n ≥ 2,

(tj)
σ−2 = (j/N)r(σ−2) = (N/j)r(2−σ) ≤ C(N/n)r(2−σ),

we have

I22 ≤ C
∣∣∣ n−1∑
j=dn−1

2 e

(nr−1N−r)2(N/n)r(2−σ)

∫ tj+1

tj

(tn+1 − s)α−1 ds
∣∣∣

≤ Cnrσ−2N−rσ
∫ tn

tdn−1
2
e

(tn+1 − s)α−1 ds.

Note that ∫ tn

tdn−1
2
e

(tn+1 − s)α−1 ds =
1

α

[
(tn+1 − tdn−1

2 e
)α − (tn+1 − tn)α

]
≤ 1

α
(tn+1 − tdn−1

2 e
)α ≤ 1

α
(tn+1)α =

1

α

(
(n+ 1)/N

)rα ≤ C(n/N)rα,(2.5)
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we get, with n ≥ 2 and α > 0,

I22 ≤ Cnrσ−2N−rσ(n/N)rα = CN−r(σ+α)nr(σ+α)−2 ≤

{
CN−r(σ+α), if r(σ + α) < 2,

CN−2, if r(σ + α) ≥ 2.

For I3, we have, with ξn ∈ (tn, tn+1), n = 1, 2, . . . , N − 1,

|I3| =
∣∣∣ ∫ tn+1

tn

(tn+1 − s)α−1
(
g(s)− P1(s)

)
ds
∣∣∣

=
∣∣∣ ∫ tn+1

tn

(tn+1 − s)α−1g′′(ξn)(s− tn)(s− tn+1) ds
∣∣∣.

By Assumption 1 and (2.3), we have, with α > 0,

|I3| ≤ C(tn+1 − tn)2(tn)σ−2

∫ tn+1

tn

(tn+1 − s)α−1 ds

= C(tn+1 − tn)2(tn)σ−2 1

α
(tn+1 − tn)α = C(tn+1 − tn)2+α(tn)σ−2

≤ C(nr−1Nr)2+α(n/N)r(σ−2) = Cnr(α+σ)−2−αN−r(α+σ)

≤

{
CN−r(σ+α), if r(σ + α) < 2 + α,

CN−(2+α), if r(σ + α) ≥ 2 + α.

Obviously the bound for I3 is stronger than the bound for I21.
Together these estimates complete the proof of Lemma 2.1.
Lemma 2.2. Let α > 0. We have
1. aj,n+1 > 0, j = 0, 1, 2, . . . , n+ 1 where aj,n+1 are the weights defined in (1.8).
2. bj,n+1 > 0, j = 0, 1, 2, . . . , n, where bj,n+1 are the weights defined in (1.7).

Proof. It is obvious that a0,n+1 > 0, an+1,n+1 > 0. For j = 1, 2, . . . , n, we have

aj,n+1 =

∫ tj

tj−1

(tn+1 − s)α−1 s− tj−1

tj − tj−1
ds+

∫ tj+1

tj

(tn+1 − s)α−1 s− tj+1

tj − tj+1
ds,

which is also positive obviously. Further we have, with j = 0, 1, 2, . . . , n,

bj,n+1 =
N−rα

α

(
((n+ 1)r − jr)α − ((n+ 1)r − (j + 1)r)α

)
> 0.

The proof of Lemma 2.2 is complete.
Lemma 2.3. Let α > 0. We have, with n = 0, 1, 2, . . . , N − 1,

an+1,n+1 ≤ CN−rαn(r−1)α,

where an+1,n+1 is defined in (1.8).
Proof. We have, by (1.8), with ξn ∈ (n, n+ 1),

an+1,n+1 ≤ C(tn+1 − tn)α = CN−rα
(
(n+ 1)r − nr

)α
= CN−rα(rξr−1

n )α

≤ CN−rα
(
r(n+ 1)r−1

)α ≤ CN−rαn(r−1)α.

The proof of Lemma 2.3 is complete.

Lemma 2.4. Let α > 0. Assume that g(t) satisfies Assumption 1.
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1. If 0 < α ≤ 1, we have

∣∣∣an+1,n+1

∫ tn+1

0

(tn+1−s)α−1
(
g(s)−P0(s)

)
ds
∣∣∣ ≤


CN−r(α+σ), if r(α+ σ) < 1 + α,

CN−r(α+σ) ln(N), if r(α+ σ) = 1 + α,

CN−1−α, if r(α+ σ) > 1 + α.

2. If α > 1, we have∣∣∣an+1,n+1

∫ tn+1

0

(tn+1−s)α−1
(
g(s)−P0(s)

)
ds
∣∣∣ ≤ {CN−r(α+σ), if r(α+ σ) < 1 + α,

CN−1−α, if r(α+ σ) ≥ 1 + α,

where P0(s) is the piecewise constant function defined by, with j = 0, 1, 2, . . . , n,

P0(s) = g(tj), s ∈ [tj , tj+1].

Proof. The proof is similar to the proof of Lemma 2.1. Note that

an+1,n+1

∫ tn+1

0

(tn+1 − s)α−1
(
g(s)− P0(s)

)
ds

= an+1,n+1

(∫ t1

0

+

n−1∑
j=1

∫ tj+1

tj

+

∫ tn+1

tn

)
(tn+1 − s)α−1(g(s)− P0(s)) ds

= I ′1 + I ′2 + I ′3.

For I ′1, we have, by Assumption 1 and Lemma 2.3

|I ′1| ≤ an+1,n+1

(∫ t1

0

(tn+1 − s)α−1|g(s)| ds+

∫ t1

0

(tn+1 − s)α−1|P0(s)| ds
)

≤
(
CN−rαn(r−1)α

)( ∫ t1

0

(tn+1 − s)α−1sσ ds+

∫ t1

0

(tn+1 − s)α−10σ ds
)

=
(
CN−rαn(r−1)α

) ∫ t1

0

(tn+1 − s)α−1sσ ds.

If 0 < α ≤ 1, by (2.1), we have

|I ′1| ≤
(
CN−rαn(r−1)α

)
(tn+1 − t1)α−1(t1)σ+1

≤
(
CN−rαn(r−1)α

)
(CN−r(α+σ)) = C(n/N)rαn−α(CN−r(α+σ)) ≤ CN−r(α+σ).

If α > 1, by (2.2), we have

|I ′1| ≤
(
CN−rαn(r−1)α

)
(tn+1)α−1(t1)σ+1

≤
(
CN−rαn(r−1)α

)
(CN−r(1+σ)) = C(n/N)(r−1)αN−αN−r(1+σ)

≤ CN−r(1+σ)−α ≤ CN−1−α.

For I ′2, we have, with ξj ∈ (tj , tj+1), j = 1, 2, . . . , n− 1,

|I ′2| ≤ an+1,n+1

n−1∑
j=1

∫ tj+1

tj

(tn+1 − s)α−1|f ′(ξj)|(s− tj) ds.
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Hence, by Assumption 1,

|I ′2| ≤ Can+1,n+1

( dn−1
2 e−1∑
j=1

+

n−1∑
j=dn−1

2 e

)
(tj+1 − tj)(tj)σ−1

∫ tj+1

tj

(tn+1 − s)α−1 ds

= I ′21 + I ′22.

For I ′21, if 0 < α ≤ 1, then we have, by Lemma 2.3, (2.3), (2.4), with n ≥ 4,

I ′21 ≤
(
CN−rαn(r−1)α

) dn−1
2 e−1∑
j=1

(
(tj+1 − tj)2(tj)

σ−1(tn+1 − tj+1)α−1
)

≤
(
CN−rαn(r−1)α

) dn−1
2 e−1∑
j=1

(jr−1N−r)2(j/N)r(σ−1)(N/n)r(1−α)

= C(n/N)rα
dn−1

2 e−1∑
j=1

jr(α+σ)−2−α(j/n)α(j/n)r(1−α)N−r(α+σ)

≤ CN−r(α+σ)

dn−1
2 e−1∑
j=1

jr(α+σ)−2−α ≤


CN−r(α+σ), if r(α+ σ) < 1 + α,

CN−r(α+σ) ln(N), if r(α+ σ) = 1 + α,

CN−1−α, if r(α+ σ) > 1 + α.

If α > 1, we have

I ′21 ≤
(
CN−rαn(r−1)α

) dn−1
2 e−1∑
j=1

(
(tj+1 − tj)2(tj)

σ−1(tn+1)α−1
)

≤
(
CN−rαn(r−1)α

) dn−1
2 e−1∑
j=1

(jr−1N−r)2(j/N)r(σ−1)(N/n)r(1−α)

= C(n/N)(r−1)αN−αN−rσ−r
dn−1

2 e−1∑
j=1

jr+rσ−2

≤ CN−α−rσ−r
dn−1

2 e−1∑
j=1

jr+rσ−2.

Note that r + rσ − 2 > −1 for any r ≥ 1. Hence we have

I ′21 ≤ CN−α−rσ−rnr+rσ−1 = C(n/N)r+rσ−1N−1−α ≤ CN−1−α.

For I ′22, we have

I ′22 ≤ (CN−rαn(r−1)α)

n−1∑
j=dn−1

2 e

(
(tj+1 − tj)(tj)σ−1

∫ tj+1

tj

(tn+1 − s)α−1 ds
)
.

By (2.3) and noting that, with dn−1
2 e ≤ j ≤ n− 1, n ≥ 2,

(tj)
σ−1 = (j/N)r(σ−1) = (N/j)r(1−σ) ≤ C(N/n)r(1−σ),
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we have, by (2.5), with α > 0,

I ′22 ≤ (CN−rαn(r−1)α)

n−1∑
j=dn−1

2 e

(
(Cnr−1N−r)(N/n)r(1−σ)

∫ tj+1

tj

(tn+1 − s)α−1 ds
)

≤ (CN−rαn(r−1)α)nr−1−r+σN−r+r−rσ(n/N)rα ≤ Cnr(σ+α)−1−αN−r(σ+α)

≤

{
CN−r(σ+α), if r(σ + α) < 1 + α,

CN−1−α, if r(σ + α) ≥ 1 + α.

For I ′3, we have, with α > 0,

|I ′3| ≤ (CN−rαn(r−1)α)(tn+1 − tn)(tn)σ−1(tn+1 − tn)α

≤ (CN−rαn(r−1)α)(tn+1 − tn)1+α(tn)σ−1.

By (2.3), we have

|I ′3| ≤ (CN−rαn(r−1)α)(nr−1N−r)1+α(n/N)r(σ−1)

= C(n/N)rαn−αnr(α+σ)−α−1N−r(α+σ)

≤ Cnr(α+σ)−α−1N−r(α+σ)

≤

{
CN−r(α+σ), if r(α+ σ) < 1 + α,

CN−1−α, if r(α+ σ) ≥ 1 + α.

Together these estimates complete the proof of Lemma 2.4.

Lemma 2.5. Let α > 0. There exists a positive constant C such that

n∑
j=0

aj,n+1 ≤ CTα,(2.6)

n∑
j=0

bj,n+1 ≤ CTα,(2.7)

where αj,n+1 and bj,n+1, j = 0, 1, 2, . . . , n are defined by (1.8) and (1.7), respectively.

Proof. We only prove (2.6). The proof of (2.7) is similar. Note that

∫ tn+1

0

(tn+1 − s)α−1g(s)ds =

n+1∑
j=0

aj,n+1g(tj) +R1,

where R1 is the remainder term. Let g(s) = 1, we have

n+1∑
j=0

aj,n+1 =

∫ tn+1

0

(tn+1 − s)α−1 · 1 ds =
1

α
(tn+1)α ≤ CTα.

Thus (2.6) follows by the fact an+1,n+1 > 0 in Lemma 2.2.

Now we turn to the proof of Theorem 1.5.
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Proof. [Proof of Theorem 1.5] Subtracting (1.3) from (1.6), we have

y(tn+1)− yn+1

=
1

Γ(α)

{∫ tn+1

0

(tn+1 − s)α−1
(
f(s, y(s))− P1(s)

)
ds

+

n∑
j=0

aj,n+1

(
f(tj , y(tj))− f(tj , yj)

)
+ an+1,n+1

(
f(tn+1, y(tn+1))− f(tn+1, y

P
n+1)

)}
=

1

Γ(α)
(I + II + III).

The term I is estimated by Lemma 2.1. For II, we have, by Lemma 2.2 and the
Lipschitz condition of f ,

|II| =
∣∣∣ n∑
j=0

aj,n+1

(
f(tj , y(tj))− f(tj , yj)

)∣∣∣ ≤ n∑
j=0

aj,n+1

∣∣f(tj , y(tj))− f(tj , yj)
∣∣

≤ L
n∑
j=0

aj,n+1|y(tj)− yj |.

For III, we have, by Lemma 2.2 and the Lipschitz condition for f ,

|III| =
∣∣an+1,n+1

(
f(tn+1, y(tn+1))− f(tn+1, y

P
n+1)

)∣∣ ≤ an+1,n+1L|y(tn+1)− yPn+1|.

Note that,

y(tn+1)− yPn+1 =
1

Γ(α)

{∫ tn+1

0

(tn+1 − s)α−1
(
f(s, y(s))− P0(s)

)
ds

+

n∑
j=0

bj,n+1

(
f(tj , y(tj))− f(tj , yj)

)}
.

Thus

|III| ≤ Can+1,n+1L

∫ tn+1

0

(tn+1 − s)α−1
∣∣f(s, y(s))− P0(s)

∣∣ ds
+ Can+1,n+1L

n∑
j=0

bj,n+1

∣∣f(tj , y(tj))− f(tj , yj)
∣∣

= III1 + III2.

The term III1 is estimated by Lemma 2.4. For III2, we have, by Lemmas 2.2, 2.3,

III2 ≤ Can+1,n+1

n∑
j=0

bj,n+1|y(tj)− yj | ≤
(
CN−rαn(r−1)α

) n∑
j=0

bj,n+1|y(tj)− yj |

≤ C(n/N)(r−1)αN−α
n∑
j=0

bj,n+1|y(tj)− yj | ≤ CN−α
n∑
j=0

bj,n+1|y(tj)− yj |.
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Hence we obtain

|y(tn+1)− yn+1| ≤ C|I|+ C

n∑
j=0

aj,n+1|y(tj)− yj |

+ C|III1|+ CN−α
n∑
j=0

bj,n+1|y(tj)− yj |.(2.8)

To complete the proof of Theorem 1.5, we shall use the mathematical induction.
We first consider the case 0 < α ≤ 1. In this case, we discuss the error estimates

in the following four cases.
Case 1. Let r(α+ σ) > max{2, 1 + α} = 2 . Assume that there exists a constant

C0 > 0 such that, with j = 0, 1, 2, . . . , n, n = 0, 1, 2, . . . , N − 1,

|y(tj)− yj | ≤ C0N
−1−α,

we shall show that

|y(tn+1)− yn+1| ≤ C0N
−1−α.

In fact, by Lemmas 2.1 and 2.4, we have

|y(tn+1)− yn+1| ≤ CN−2 + C

n∑
j=0

aj,n+1|y(tj)− yj |

+ CN−1−α + CN−α
n∑
j=0

bj,n+1|y(tj)− yj |

≤ CN−2 + C0CT
αN−1−α + CN−1−α + TαC0N

−αN−1−α.(2.9)

Following the idea of the proof for [8, Lemma 3.1, pp.41], we may first choose T
sufficiently small such that the second term of the right hand side of (2.9) is less
than C0

2 N
−1−α, then choose N sufficiently large and C0 sufficiently large such that

the summation of the other terms in the right hand side of (2.9) is also less than
C0

2 N
−1−α. Thus we get

|y(tn+1)− yn+1| ≤ C0N
−1−α.

Case 2. Let r(α+σ) ≤ min{2, 1+α} = 1+α. Assume that there exists a constant
C0 > 0 such that, with j = 0, 1, 2, . . . , n, n = 0, 1, 2, . . . , N − 1,

|y(tj)− yj | ≤ C0N
−r(α+σ).

Following the similar argument as in Case 1, we may show that

|y(tn+1)− yn+1| ≤ C0N
−r(α+σ).

Case 3. Let 1 + α < r(α+ σ) ≤ 2. We may show that

|y(tn+1)− yn+1| ≤ C0N
−1−α.

Case 4. Let r(α+ σ) = 1 + α. We may show that

|y(tn+1)− yn+1| ≤ C0N
−1−α ln(N).
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We next consider the case α > 1. In this case, we also discuss the error estimates
in the following four cases.

Case 1. Let r > max{ 1+α
α+σ ,

2
1+σ} = 2

1+σ . Assume that there exists a constant
C0 > 0 such that, with j = 0, 1, 2, . . . , n, n = 0, 1, 2, . . . , N − 1,

|y(tj)− yj | ≤ C0N
−2,

we shall show that

|y(tn+1)− yn+1| ≤ C0N
−2.

In fact, we have, using the same argument as in the proof of (2.8),

|y(tn+1)− yn+1| ≤ CN−2 + C

n∑
j=0

aj,n+1|y(tj)− yj |

+ CN−1−α + CN−α
n∑
j=0

bj,n+1|y(tj)− yj |

≤ CN−2 + C0T
αN−2 + CN−1−α + TαC0N

−αN−2.(2.10)

Following the idea of the proof for [8, Lemma 3.1, pp.41], we may first choose T
sufficiently small such that the second term of the right hand side of (2.10) is less
than C0

2 N
−2, then choose N sufficiently large and C0 sufficiently large such that the

summation of the other terms in the right hand side of (2.10) is also less than C0

2 N
−2.

Thus we get

|y(tn+1)− yn+1| ≤ C0N
−2.

Case 2. Let r < min{ 1+α
α+σ ,

2
1+σ} = 1+α

α+σ . Assume that there exists a constant
C0 > 0 such that, with j = 0, 1, 2, . . . , n, n = 0, 1, 2, . . . , N − 1,

|y(tj)− yj | ≤ C0N
−r(1+σ).

Following the similar argument as in Case 1, we may show that,

|y(tn+1)− yn+1| ≤ C0N
−r(1+σ).

Case 3. Let 1+α
α+σ ≤ r <

2
1+σ . We may show that

|y(tn+1)− yn+1| ≤ C0N
−r(1+σ).

Case 4. Let r = 2
1+σ . We may show that

|y(tn+1)− yn+1| ≤ C0N
−2 ln(N).

Together these estimates complete the proof of Theorem 1.5.

3. Numerical examples. In this section, we will give some numerical examples
to illustrate the convergence orders of the numerical method (1.6) under the different
smoothness assumptions of C

0 D
α
t y in (1.3). For simplicity, we only present the nu-

merical results for the case α ∈ (0, 1). Similarly we may obtain the numerical results
for α > 1.

Example 3.1. Consider, with 0 < α < 1, 0 < β < 1 and α < β,

C
0 D

α
t y(t) =

Γ(1 + β)

Γ(1 + β − α)
tβ−α + t2β − y2, t ∈ (0, T ],(3.1)

y(0) = y0,(3.2)
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where y0 = 0, and the exact solution is y(t) = tβ , and C
0 D

α
t y(t) = Γ(1+β)

Γ(1+β−α) t
β−α,

which implies that the regularity of C
0 D

α
t y(t) behaves as tβ−α. Thus we see that

C
0 D

α
t y(t) satisfies the Assumption 1.

Let N be a positive integer. Let 0 = t0 < t1 < · · · < tN = T be the graded meshes
on [0, T ], where tj = T (j/N)r, j = 0, 1, 2, . . . , N with r ≥ 1. For simplicity, we choose
T = 1. Assume that y(tj) and yj , j = 0, 1, 2, . . . N are the solutions of (1.3) and
(1.6), respectively. We have, by Theorem 1.5 with σ = β − α,

‖eN‖ := max
0≤j≤N

|y(tj)− yj | ≤


CN−rβ , if r < 1+α

β ,

CN−rβ ln(N), if r = 1+α
β ,

CN−(1+α), if r > 1+α
β .

For the different α ∈ (0, 1), we choose the different r and the different N =
20×2l, l = 1, 2, 3, 4, 5. We obtain the maximum nodal errors ‖eN‖∞ defined above with
respect to the different N . We also calculate the experimental order of convergence

(EOC) by log 2
(
‖eN‖∞
‖e2N‖∞

)
.

In Tables 1-3, we choose β = 0.9 and we obtain the experimental orders of conver-
gence (EOC) and the maximum nodal errors with respect to the different N . We see
that the experimental orders of convergence (EOC) are almost O(N−rβ) = O(N−(1+α)

if we choose r = 1+α
β .

N=40 N=80 N=160 N=320 N=640
r = 1 1.43E-2 7.68E-3 4.12E-3 2.21E-3 1.18E-3

0.897 0.899 0.899 0.899
r = 1+α

β 5.18E-4 1.49E-4 4.27E-5 1.23E-5 3.51E-6

1.800 1.800 1.800 1.800
Table 1

Maximum nodal errors and orders of convergence for Example 3.1 with α = 0.8 and β = 0.9

N=40 N=80 N=160 N=320 N=640
r = 1 8.95E-3 4.83E-3 2.60E-3 1.39E-3 7.46E-4

0.889 0.896 0.898 0.899
r = 1+α

β 1.29E-3 3.88E-4 1.20E-4 3.82E-5 1.23E-5

1.727 1.687 1.655 1.635
Table 2

Maximum nodal errors and orders of convergence for Example 3.1 with α = 0.6 and β = 0.9

N=40 N=80 N=160 N=320 N=640
r = 1 4.33E-3 2.40E-3 1.30E-3 7.01E-4 3.76E-4

0.853 0.881 0.892 0.897
r = 1+α

β 4.64E-3 1.46E-3 4.84E-4 1.66E-4 5.87E-5

1.667 1.595 1.541 1.503
Table 3

Maximum nodal errors and orders of convergence for Example 3.1 with α = 0.4 and β = 0.9
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Example 3.2. Consider, with 0 < α < 1,

C
0 D

α
t y(t) + y(t) = 0, t ∈ (0, T ],(3.3)

y(0) = y0,(3.4)

where y0 = 1. The exact solution is y(t) = Eα,1(−tα), and C
0 D

α
t y(t) = −Eα,1(−tα),

where Eα,γ(z) is the Mittag-Leffler function defined by

Eα,γ(z) =

∞∑
k=0

zk

Γ(αk + γ)
, α, γ > 0.

Hence we have

C
0 D

α
t y(t) = −1− (−tα)

Γ(α+ 1)
− (−tα)2

Γ(2α+ 1)
− . . . ,

which implies that the regularity of C
0 D

α
t y(t) behaves as c + ctα, 0 < α < 1. By

Theorem 1.5 with σ = α, we have

‖eN‖∞ := max
0≤j≤N

|y(tj)− yj | ≤


CN−r(2α), if r < 1+α

2α ,

CN−r(2α) ln(N), if r = 1+α
2α ,

CN−(1+α), if r > 1+α
2α .

In Tables 4-6, we obtain the experimental orders of convergence (EOC) and the
maximum nodal errors with respect to the different N . We see that the experimental
orders of convergence (EOC) are almost O(N−r(2α)) = O(N−(1+α) if we choose r =
1+α
α .

N=40 N=80 N=160 N=320 N=640
r = 1 1.14E-4 4.43E-5 1.59E-5 5.47E-6 1.85E-6

1.370 1.481 1.535 1.564
r = 1+α

2α 9.48E-5 2.75E-5 8.05E-6 2.36E-6 6.94E-7
1.784 1.773 1.768 1.767

Table 4
Maximum nodal errors and orders of convergence for Example 3.2 with α = 0.8

N=40 N=80 N=160 N=320 N=640
r = 1 7.57E-4 4.34E-4 2.20E-4 1.05E-4 4.83E-5

0.803 0.981 1.069 1.118
r = 1+α

2α 2.58E-4 9.66E-5 3.41E-5 1.17E-5 3.93E-6
1.418 1.503 1.547 1.570

Table 5
Maximum nodal errors and orders of convergence for Example 3.2 with α = 0.6
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Chester for its warm hospitality and providing a very good working condition for her
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N=40 N=80 N=160 N=320 N=640
r = 1 5.12E-4 8.33E-4 1.00E-3 8.17E-4 5.78E-4

-0.702 -0.268 0.296 0.498
r = 1+α

2α 2.58E-4 9.66E-5 3.41E-5 1.17E-5 3.93E-6
1.123 1.233 1.304 1.343

Table 6
Maximum nodal errors and orders of convergence for Example 3.2 with α = 0.4
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