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Abstract. Uneven illumination is a common problem in practical optical
systems designed for machine vision applications, and it leads to signifi-
cant errors when phase-shifting algorithms (PSA) are used to reconstruct
the surface of a moving object. We propose an illumination-reflectivity-
focus model to characterize this uneven illumination effect on phase-mea-
suring profilometry. With this model, we separate the illumination factor
effectively and consider the phase reconstruction from an optimization
perspective. Furthermore, we formulate an illumination-invariant phase-
shifting algorithm (II-PSA) to reconstruct the surface of a moving object
under an uneven illumination environment. Experimental results show
that it can improve the reconstruction quality both visually and numerically.
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1 Introduction
Over the past few years, advances in surface reconstruction
have inspired many applications.1 However, surface profiling
is particularly challenging when it is applied to the semicon-
ductor industry, due to two conflicting requirements: a small
feature size requiring a high precision, and the need for a
high throughput.2 Application-specific solutions are often
needed. For example, to tackle certain applications with strict
constraints on the dimension of the system, Wakayama and
Yoshizawa developed a compact camera for three-dimen-
sional profilometry.3 On the other hand, for some inspection
applications, explicit three-dimensional reconstruction is not
needed, but efficiency is often of prime concern. As another
example, Dong et al. proposed a biplanar disparity matrix for
measuring the heights of wafer bumps based on a specially
designed illumination and imaging setup.4 Nevertheless, in
many other applications such as surface inspection and
volume measurement, a dense profile is necessary, so good
ways to reconstruct the full surface profile are needed.5

Phase-measuring profilometry, especially the phase-shift-
ing algorithm (PSA), is one of the most popular methods for
dense surface reconstruction. By projecting a sinusoidal
pattern with different phase shifts on to a stationary surface
and analyzing the corresponding fringe pattern images, one
can recover the phase offset due to the height variation of the
surface. When it is combined with an encoded marker as the
reference, one can obtain high-resolution, three-dimensional

absolute coordinates of the surface.6 Besides using PSAwith
a sinusoidal pattern for three-dimensional profilometry,
Cheng et al. developed a method that projects binary patterns
on the surfaces of integrated circuit (IC) samples7 and opti-
mizes the bit-pairing codification to obtain robust profile
data.8 However, one requirement of this technique is an addi-
tional interpolation step to obtain a dense surface of the
object due to the discrete nature of the patterns. PSA also
requires a lot of computation, but it can be efficiently
implemented so that the corresponding core calculation is
parallelized inside the graphics processing unit (GPU) for
high-speed applications.9 Therefore, this technique is attract-
ing more and more attention from both academia and
industry.10,11

The error sources affecting surface reconstruction based
on PSA and some variants have been extensively studied.
For instance, with a Taylor series expansion, Brophy consid-
ered the effect of the intensity fluctuations on PSA.12 Using
Fourier analysis, de Groot analyzed the effect of mechanical
vibrations and phase shift error.13 Deck corrected the phase
error in PSA through a spectral analysis of the error pattern
due to vibration.14 Wang and Han proposed a random PSA to
extract the phase distributions with randomly shifted sinusoi-
dal patterns.15 Chen et al. presented a phase error compensa-
tion method to reduce the phase error and shape waviness
based on a smoothing spline fitting.16 Gai and Da combined
PSAwith amplitude modulation to solve the phase wrapping
problem.17 Last but not least, to improve the accuracy of the
reconstruction results and apply PSA in a high-precision0091-3286/2012/$25.00 © 2012 SPIE
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semiconductor inspection, Deng et al. investigated the
locally smoothing property of the surface in a regularized
phase-shifting algorithm (R-PSA).18

However, most of these advances in PSA are based on a
conventional phase-measuring profilometry model, which
assumes that the object for surface reconstruction is station-
ary, so that each point on the surface receives a consistent
illumination during imaging. However, keeping the object
stationary is not sufficient to deliver a high throughput in
most real-time inspection and measurement applications.
For example, on the production line, an object often moves
along a conveyor belt and appears at different positions of the
field of view (FOV) in the image sequences. As such, uneven
illumination becomes more pronounced, especially in cam-
era systems with a large FOV that aim to deliver a high
throughput, and the object receives significantly different
illumination patterns in the image sequences when moving
to different positions. This uneven illumination challenges
the conventional model and PSA for surface reconstruction.
To cope with this, in this work we propose an illumination-
reflectivity-focus (IRF) model to characterize the uneven
illumination on phase-measuring profilometry. Concurrent
with this, we develop an illumination-invariant phase-
shifting algorithm (II-PSA) to reconstruct the surface of a
moving object under uneven illumination.
In Sec. 2, we describe the uneven illumination effect on

phase-measuring profilometry and review briefly the meth-
ods that have been developed to handle this problem. Next,
we investigate the intensity formation model mathematically
in order to explain why the conventional model fails in
reconstructing the surface of a moving object. With this,
we propose an IRF model to characterize the uneven illumi-
nation factor on phase-measuring profilometry. In Sec. 3, we
propose the corresponding II-PSA to solve the phase recon-
struction problem under uneven illumination. We give some
experimental results in Sec. 4 and concluding remarks
in Sec. 5.

2 Uneven Illumination and the Phase-measuring
Profilometry Model

2.1 Issue with Uneven Illumination

Many imaging systems produce nonuniform illumination
because of either lens distortion or nonuniformity in light
sources such as filament support wires, gas discharge elec-
trodes, and light-emitting diode (LED) heat-sink structures.
The movement of an object relative to the illumination
source also introduces fluctuations in intensity. However,
it is difficult to model the illumination source geometrically
when the parameters inside the light source are not clear for
most applications. Without the model, the nonuniformity is
often challenging for many pattern recognition and machine
vision applications.
Figure 1 shows the setup of a triangulation system for

phase-measuring profilometry. To illustrate the uneven illu-
mination effect on phase estimation, we put a homogeneous
plane on the reference plane of a real optical system and pro-
ject sinusoidal patterns on to its surface. This results in a
fringe image, as shown in Fig. 2(a). If we take one row of
the intensity image (marked by the red line), ideally this
cross-section intensity profile should be a perfect sinusoidal
signal, but in practice it is altered as shown in Fig. 2(b). Now,

consider a specific point x0, which is shifted by sk(k ¼
1; 2; 3; 4) along the red line to different positions in the
FOV. This cross-section plot also characterizes the intensity
profile of x0 according to the phase shifts from motion. In
this example, the points x0 þ sk correspond to the peaks of
the sinusoidal signal. However, their intensities vary due to
the uneven illumination distribution on the FOV. This causes
significant difficulties in distinguishing such intensity varia-
tions from the phase offset due to height variations in phase-
measuring profilometry, which becomes a major error source
in PSA.

2.2 Methods to Address Illumination Nonuniformity

There are so-called active and passive techniques to tackle
illumination nonuniformity. In the former, we add specific
illumination sources and sensors to obtain different modal-
ities of the images. For example, assuming that the tempera-
ture is constant over the size of the object, infrared imagery
has been used to obtain uniform intensity in some vision
applications.19 This assumption, however, may not be
valid for general surfaces. Other components, such as optical
films and diffusers, can also be used to reduce the uneven
illumination,20 which comes at the expense of the overall
brightness. Shu et al. proposed a tilted projection optics sys-
tem to improve the image quality of the fringe pattern.21

Another alternative is to use a lens array to improve the illu-
mination evenness,22 but the tradeoff is a more complicated
design for the optical system.
In the passive approaches, the illumination variation

model requires many testing samples under different lighting
conditions to characterize the radiance distribution, or it
requires the exact parameters of the components such as the
shapes and sizes of the emitting die inside the LED sources.
In addition, some emission characteristics, such as a Lamber-
tian object surface, are assumed,23 but these assumptions
may not be valid in practical applications. Because of such
difficulties, in phase-measuring profilometry, there are not
many discussions regarding how to model the illumination
variation based on fringe images and how to handle it during
surface reconstruction.

2.3 Conventional Phase-Measuring Profilometry
Model

Here we briefly review the conventional imaging model.
Since the phase is calculated point by point, for simplicity,

Fig. 1 The schematic setup of the phase reconstruction system.
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we consider only the reconstruction of the height at coordi-
nates x0(a two-dimensional quantity in reality) as shown in
Fig. 1. We further assume that the phase is shifted along the
x-direction. The whole surface reconstruction can then be
achieved row by row.18 If both the projecting and imaging
systems are telecentric, we can relate the surface height
hðx0Þ and the corresponding phase offset ϕhðx0Þ by

ϕhðx0Þ ¼
2πðtan αþ tan βÞ

P
hðx0Þ; (1)

where P is the pitch of the grating on the reference surface,
and α and β are the incident angles of the projector and the
detector, respectively.24 This phase offset, ϕhðx0Þ, is added to
a reference surface phase ϕrðx0Þ to become the total phase of
the deformed sinusoidal signal, denoted ϕðx0; hÞ. That
is, ϕðx0; hÞ ¼ ϕrðx0Þ þ ϕhðx0Þ.
Let Bðx0Þ be the background intensity and Cðx0Þ be the

fringe contrast at the point x0. The kth captured image inten-
sity Ikðx0Þ, at phase shift θðskÞ is characterized by

Ikðx0Þ¼Bðx0ÞþCðx0Þcos½ϕðx0;hÞþθðskÞ�þNkðx0Þ; (2)

where k ¼ 1; : : : ; n, and Nkðx0Þ is the additive noise. In this
equation, there are only three variables: Bðx0Þ, Cðx0Þ, and
ϕðx0; hÞ. Therefore, we need at least three images to solve
for them. In practice, it is common to use four (or more)
images with evenly distributed phase shifts at θðskÞ ¼
ðk − 1Þπ∕2, where a simple solution exists, given by

ϕhðx0Þ ¼ arctan

�
I4ðx0Þ − I2ðx0Þ
I1ðx0Þ − I3ðx0Þ

�
− ϕrðx0Þ: (3)

The height is then recovered with Eq. (1), and the whole sur-
face of an object can be obtained point by point in an ana-
logous manner.18

2.4 Illumination-Reflectivity-Focus Model

The above method allows for an efficient reconstruction of
stationary objects, but it is not applicable for reconstructing
moving objects or for stationary objects larger than the FOV,
because the background intensity and fringe contrast vary
according to the shift sk of the object. Instead, here we
develop a generalized model that incorporates the illumina-
tion factor explicitly, restricting ourselves to industrial appli-
cations where the lighting can be well controlled so that the
illumination within each image is a repeatable pattern.
Accordingly, we can calibrate the system before real-time
reconstruction.
To reconstruct hðx0Þ under uneven illumination, we intro-

duce Bðx0 þ skÞ and Cðx0 þ skÞ (where k ¼ 1; : : : ; n) in the
phase-measuring model when the point is shifted to x0 þ sk.
The intensity Ikðx0Þ can then be described as

Ikðx0Þ ¼ Bðx0 þ skÞ þ Cðx0 þ skÞ cos½ϕðx0; hÞ þ θðskÞ�
þ Nkðx0Þ: (4)

Furthermore, we decompose these two new variables in
terms of the reflectivity factor Rðx0Þ, which is a constant irre-
spective of the shift, the illumination factor Lðx0 þ skÞ, and
the focus factor Fðx0 þ skÞ, such that

Bðx0 þ skÞ ¼ Lðx0 þ skÞRðx0Þ; (5)

Cðx0 þ skÞ ¼ Lðx0 þ skÞRðx0ÞFðx0 þ skÞ: (6)

This leads to our illumination-reflectivity-focus (IRF) model,
where
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Fig. 2 The fringe pattern on a homogeneous reference plane from a real system under uneven illumination. (a) The projected 2D fringe pattern on
the plane. (b) A cross-section intensity profile as indicated in (a) (red line). When a point x0 on the homogeneous plane moves along this profile, its
intensity is altered according to the position x0 þ sk .
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Ikðx0Þ ¼Lðx0þ skÞRðx0Þf1
þFðx0þ skÞcos½ϕðx0;hÞþ θðskÞ�gþNkðx0Þ: (7)

There are several advantages of this IRF model:

• The IRF model identifies the three major factors for
formulating and analyzing the intensity images.
Eq. (7) points out that the three major factors contri-
buting to the intensity image are the illumination, the
reflectivity from the surface, and the focus. We can
thus consider how each of them affects the image for-
mation, and we can study the error sources from these
factors individually.

• IRF generalizes the conventional model. When we
reconstruct the surface of a stationary object, the illu-
mination and the focus at x0 are not changed according
to the phase shifts. On the other hand, when we recon-
struct the surface of a moving object under even illu-
mination and focus, the illumination factor and the
focus factor are the same for all sk, i.e., Lðx0Þ ¼
Lðx0 þ skÞ and Fðx0Þ ¼ Fðx0 þ skÞ. In these two spe-
cial cases, the conventional model in Eq. (2) suffices.
However, in a large FOV system with varying illumi-
nation and focus distributions, we need to turn to this
generalized IRF model to describe the exact relation-
ship between the phase offset due to the height
variation and the deformed intensity, as well as to
reconstruct the surface of the moving objects.

• The decomposition suggests an efficient way to tackle
the phase reconstruction problem. When the optical
system is fixed, the illumination on the FOV remains
the same during image formation. Because this IRF
model separates it from the other factors, we can cali-
brate the illumination distribution first and then use
this as prior knowledge during the real-time surface
reconstruction.

In the following section, we show how to formulate the
phase reconstruction as an optimization problem based on
this IRF model.

3 Problem Formulation and Illumination-Invariant
Phase-Shifting Algorithm

To simplify the discussion, we use a four-frame algorithm
with phase shifts at θðskÞ ¼ ðk − 1Þπ∕2 as an example while
noting that the present method is applicable to other cases
with more frames and shifts. Consider the phase reconstruc-
tion at a specific point x0. Let Ekðx0Þ be the residual error of
the model in Eq. (7), i.e.,

Ekðx0Þ ¼ Ikðx0Þ−Lðx0þ skÞRðx0Þ

×
�
1þFðx0þ skÞcos

�
ϕðx0;hÞþ ðk− 1Þπ

2

��
; (8)

and the optimal ϕðx0; hÞ at x0 is found by minimizing

Eðx0Þ ¼
X4
k¼1

E2
kðx0Þ: (9)

With the IRF model, the degrees of freedom exceed the

amount of data we collect, so it is a challenge to solve
for ϕðx0; hÞ without prior knowledge.
We note, however, that the case is made simpler if the

projecting and imaging systems are fixed. Although the illu-
mination and the focus vary according to their positions in
this IRF model, their distributions on the FOV remain the
same when we reconstruct the surface of the moving objects.
Therefore, we can use a homogeneous reference plane for
calibration beforehand. Without loss of generality, we
assume the reflectivity is unity on such a reference plane,
where ϕhðx0Þ ¼ 0 for all x0, and therefore ϕðx0; hÞ ¼
ϕrðx0Þ. After we shift the grating regularly with phase shifts
θðskÞ ¼ ðk − 1Þπ∕2, we can calculate ϕrðx0Þ from Eq. (3)
point by point, which becomes the reference phase for
later use.
Next we compute the illumination and focus distributions.

By substituting the reference phase as ϕðx0; hÞ in Eq. (2),
and denoting

M0 ¼

2
666666664

1 cos
�
ϕðx0; hÞ þ 0

�

1 cos
�
ϕðx0; hÞ þ π

2

�

1 cos
�
ϕðx0; hÞ þ π

�

1 cos
�
ϕðx0; hÞ þ 3π

2

�

3
777777775
; (10)

and

v0 ¼
�
Bðx0Þ
Cðx0Þ

�
; n0 ¼

2
666664

N1ðx0Þ
N2ðx0Þ
N3ðx0Þ
N4ðx0Þ

3
777775
; i0 ¼

2
666664

I1ðx0Þ
I2ðx0Þ
I3ðx0Þ
I4ðx0Þ

3
777775
; (11)

we have a simple matrix form M0v0 þ n0 ¼ i0 for the ima-
ging model. Assuming that the noise is additive Gaussian,
we can use least squares to estimate Bðx0Þ and Cðx0Þ by
minimizing

���M0v0 − i0
���2
2
.

We note, however, that the camera noise and quantization
error cause these least-square solutions to fluctuate signifi-
cantly. In most practical systems for machine vision applica-
tions, the illumination varies gradually within a small
neighborhood. Hence, we apply a lowpass filter (such as
a 3 × 3 simple averaging) to these point-wise Bðx0Þ and
Cðx0Þ. With these, the illumination and focus distributions
can be estimated from Eqs. (5) and (6).
Next we proceed to phase recovery. When we place the

reconstruction point x0 at different positions in the FOV
under uneven illumination, the values of the cost function
represented by Eqs. (8) and (9) are different. However,
the surface properties of this point, namely its reflectivity
and height, are related only to the variables Rðx0Þ and
ϕðx0; hÞ. In a calibrated system with known illumination
and focus distributions, these two variables model the mag-
nitude modulation and the phase modulation processes,
respectively, and they uniquely determine the intensity
images at a given phase shift. Therefore, even if more images
are captured for the sake of robustness and accuracy, the
degrees of freedom remain at two in this calibrated system.
As such, we name these two the fundamental variables.
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Furthermore, we make use of a different cost function that is
invariant to illumination and focus distributions. This is
achieved through normalizing the original cost function
by the illumination and focus quantities. Then the new
cost function is

Êðx0Þ ¼
X4
k¼1

�
Ikðx0Þ

Lðx0 þ skÞFðx0 þ skÞ
−

Rðx0Þ
Fðx0 þ skÞ

− Rðx0Þ cos
�
ϕðx0; hÞ þ ðk − 1Þ π

2

��
2

:

(12)

Note that the illumination and focus distributions are
known within the FOV after the previous optical calibration
step, so there are only two variables to be optimized: Rðx0Þ
and ϕðx0; hÞ. Since they are coupled in this nonlinear opti-
mization problem, to handle them one at a time, we first con-
sider Rðx0Þ, Rðx0Þ cos ϕðx0; hÞ, and Rðx0Þ sin ϕðx0; hÞ as
variables and solve for them through a least-square estima-
tion. Then, based on this estimated Rðx0Þ, we compute the
optimal ϕðx0; hÞ in a manner similar to our previous work.24
For simplicity, we denote the calibrated Lðx0 þ skÞ and

Fðx0 þ skÞ as Lk and Fk, respectively, and we let

M̂0 ¼

2
6666664

1
F1

cos 0 − sin 0

1
F2

cos π
2

− sin π
2

1
F3

cos π − sin π

1
F4

cos 3π
2

− sin 3π
2

3
7777775
; (13)

and

v̂0 ¼

2
664

Rðx0Þ
Rðx0Þ cos ϕðx0; hÞ
Rðx0Þ sin ϕðx0; hÞ

3
75; î0 ¼

2
66666664

I1ðx0Þ
L1F1

I2ðx0Þ
L2F2

I3ðx0Þ
L3F3

I4ðx0Þ
L4F4

3
77777775
: (14)

Minimizing the cost function in Eq. (12) can therefore be
formulated as minimizing

Êðx0Þ ¼
���M̂0v̂0 − î0

���2
2
: (15)

Using a least-square estimation, we have

v̂0 ¼ ðM̂T
0 M̂0Þ−1M̂T

0 î0: (16)

We can now extract the first element Rðx0Þ from v̂0, substi-
tute this variable into Eq. (12), and then solve for the more
important variable ϕðx0; hÞ related to the surface height.
With known Lk, Fk, and Rðx0Þ, letting

M̃0 ¼

2
666664

Rðx0Þ cos 0 −Rðx0Þ sin 0

Rðx0Þ cos π
2

−Rðx0Þ sin π
2

Rðx0Þ cos π −Rðx0Þ sin π

Rðx0Þ cos 3π
2

−Rðx0Þ sin 3π
2

3
777775
; (17)

and

ṽ0 ¼
�
cos ϕðx0; hÞ
sin ϕðx0; hÞ

�
; ĩ0 ¼

2
66666664

I1ðx0Þ
L1F1

− Rðx0Þ
F1

I2ðx0Þ
L2F2

− Rðx0Þ
F2

I3ðx0Þ
L3F3

− Rðx0Þ
F3

I4ðx0Þ
L4F4

− Rðx0Þ
F4

3
77777775
; (18)

we can minimize the cost function in Eq. (12) by reformulat-
ing it to

minimize Êðx0Þ ¼
���M̃0ṽ0 − ĩ0

���2
2
;

subjectto kṽ0k ¼ 1:
(19)

This is solved by a standard least-square optimization with a
quadratic constraint.25

After obtaining the optimized cos ϕðx0; hÞ and
sin ϕðx0; hÞ from ṽ0, we can determine the phase ϕðx0; hÞ.
Finally, by subtracting the reference phase ϕrðx0Þ from the
calibration, we can use Eq. (1) to obtain the surface profile
point by point.

4 Numerical Analyses and Experiments

4.1 Simulation Experiments

In the experiments below, we extract four consecutive
images from a synthetic image sequence and apply the four-
frame PSA and II-PSAwith phase shifts θðskÞ ¼ ðk − 1Þπ∕2
for surface reconstruction. Figure 3(a) to 3(d) shows one set
of the sample images of a homogeneous plane when it moves
along the x-direction across the FOV of the optical system.
The period of the sinusoidal pattern is P ¼ 12 pixels, and the
images are captured at four sequential positions at s1 ¼ 0,
s2 ¼ 63, s3 ¼ 126, and s4 ¼ 189 pixels relative to the initial
position. The red boxes mark the region of interest (ROI) on
the plane when it moves to different positions of the FOV.We
align these ROIs from the image sequences as shown in 3(e)
to 3(h) before surface reconstruction. Note that we can see,
for instance, that 3(e) is brighter than 3(h), indicating uneven
illumination during the imaging process.
In our first experiment, the illumination distribution is

synthesized linearly from an intensity level 100 on the left
end of a 256 × 256 image to 50 on the right. The focus factor
is assumed to be a constant equal to 0.8 on a homogeneous
plane. We synthesize these images according to the IRF
model in Eq. (7), together with an additive Gaussian noise
with a standard deviation of 5. After calibrating the illumi-
nation and focus distributions, we reconstruct the phase due
to height variations, where a set of one-dimensional recon-
struction results are shown in Fig. 4. Figure 4(a) shows the
four cross-section intensity profiles extracted from the center
rows of the aligned ROIs in Fig. 3. We can observe that the
uneven illumination contributes significantly to the nonuni-
formity of the sinusoidal signal, compared with the camera
noise. This variation would normally be interpreted as a
phase offset due to the height variation in PSA, and it causes
a large periodic phase error disturbance on the reconstructed
phase, as shown in (b). In contrast, in our II-PSA, this per-
iodic error pattern is removed by illumination normalization.
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Only a random error pattern due to the camera noise remains.
The standard deviations of the error are 0.23 radian for PSA
and 0.07 radian for II-PSA, respectively.
Our next experiments involve the two-dimensional model

under different illumination distributions. Similar to the
above experiment, we simulate the illumination distribution,
now a two-dimensional function denoted Lðx; yÞ, by using
different analytical functions, such as a linear function
[where Lðx; yÞ ¼ 100 − 0.2x], a quadratic function {where

Lðx; yÞ ¼ 100 − ½ðx−128
26
Þ2 þ ðy−128

26
Þ2�}, and a Gaussian

function {where Lðx; yÞ ¼ 100 exp½ðx−128
220
Þ2 þ ðy−128

220
Þ2�}.

To test the performances at different phase values, we synthe-
size a tilted plane with the ground truth phase offsets from
−π to π when forming the intensity images. Figure 5 shows
one sample result based on the quadratic illumination pattern
and an additive Gaussian noise with a standard deviation of
5. As we compare PSA with II-PSA, again we can see that
the periodic error disturbance is significantly suppressed in
the latter. More quantitative results at different noise levels
are given in Table 1.

(b)(a)

(d)(c)

(e) (f) (g) (h)

Fig. 3 (a) to (d) The image sequences of a homogeneous planemoving horizontally from left to right. (e) to (h) The corresponding regions of interest
extracted from these images. These regions come from the same physical region of the object during the movements, and they are aligned for
surface reconstruction.
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In addition to noting that II-PSA in general gives a smaller
error than PSA, we can also observe that the reconstruction
performance of II-PSA under different illumination distribu-
tions are quite close at the same noise level. This trend is
even more evident at a low noise level when the uneven illu-
mination becomes more pronounced than the camera noise.
This points to the fact that the cost function in II-PSA is
invariant to illumination distributions. Further, when the
noise intensity is small, such as when σ ¼ 1, the improve-
ment of our II-PSA over PSA is very significant. The stan-
dard deviation of the error is only 0.01 radian under different
illumination distributions. As the noise level increases, the
improvement of our II-PSA becomes less pronounced,
because the camera noise has a dominant effect on the inten-
sity fluctuation and becomes a major error source. The ben-
efit of calibrating and correcting the uneven illumination
distribution is reduced.

4.2 Experiments in Real Applications

We have applied the surface reconstruction technique in a
machine vision system for inspecting surfaces of thin
solar wafers. These wafers are crisp and easily stained during
production. For solar panel efficiency consideration in solar
energy applications, the precise dimensional information—
especially the thickness of wafers—must remain within a

certain range. Also, for monitoring the quality of the wafers
on the production line, we need to check whether there are
defects on these wafers by inspecting their 3D surfaces.
Figure 6(a) shows a typical polycrystal wafer image cap-

tured by a color camera. Since the wafer is large (around
156 mm by 156 mm) and very thin (around 200 μm), it is
easy to break it and difficult to use conventional metrology
tools to measure its surface without staining it. To reconstruct
the dense surfaces of this wafer efficiently on the production
line for subsequent surface inspection and height measure-
ment, we have designed an automated noncontact phase-
measuring profilometry system. In our system, we adopt
the cameras and projectors made by ASM Pacific Technol-
ogy Limited. The frame rate of the camera is 100 frames per
second, and these CCD cameras output eight-bit-intensity
images with an array size of 240 × 240 at each frame. Since
the imaging resolution is 27 μm per pixel along the moving
direction x and 235 μm per pixel along the y-direction,
the resulting FOV for each image is only 6.48 mm by
56.4 mm. To reconstruct the top view surface of the wafer
when it moves along the x-direction, we use three pairs of
cameras and projectors. We arrange these cameras and pro-
jectors along the y-direction in a triangular setup as shown in
Fig. 6(b), so they can always cover the wafer in the y-direc-
tion and reconstruct piece by piece along the x-direction.
Similarly, we use another three pairs of cameras and projec-
tors below the wafer to reconstruct the bottom view surface
of the wafer.
Using the conventional phase-shifting algorithm, we find

there is a periodic error disturbance of about �15 μm in the
reconstructed wafer surface as shown in Fig. 7. Figure 7(a)
shows a real sample image of a polycrystal wafer with an
image size of 240 × 240 pixels. This image is captured by
the middle camera on the top after projecting sinusoidal pat-
terns on the wafer. From this fringe image, we can easily
observe the uneven illumination effect, because the left
side of the FOV is brighter than the right side. As analyzed
in Sec. 2, this uneven illumination pattern introduces error in
the phase-measuring profilometry, and it affects the subse-
quent inspection and measurement. However, once the opti-
cal system has been installed and fixed on the production
line, this uneven illumination pattern is repeatable. To
remove this error source, first we use the proposed II-PSA
from Sec. 3 to calibrate the illumination pattern. As shown
in Fig. 6(b), a wafer is kept stationary within the FOVof the
optical system for calibration. Afterwards, we normalize this
illumination pattern during the real-time surface reconstruc-
tion when the wafers are moving along the conveyor belt dur-
ing the production process. Figure 7(b) and 7(c) shows the
reconstructed profiles of the region marked on the image of
the wafer in Fig. 7(a) based on the conventional PSA and our
II-PSA. By comparing these reconstructed surfaces and their
cross-section 1D profiles as shown in Fig. 7(d), we can see
that, using our technique, the periodic error pattern caused by
the uneven illumination can be removed. And we have
achieved an accuracy of less than 10 μm in our reconstruc-
tion system. For high-speed consideration, besides using
multiple cameras and projectors, we use Intel(R) Core
(TM) i7 CPU X 980 @ 3.33 GHz with 4 G RAM in our
system, so that we can reconstruct a wafer within 1 s and
apply our system in real-time solar wafer inspection on
the production line.
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Fig. 4 Reconstruction results based on a one-dimensional model.
(a) Four synthetic intensity profiles at phase shifts θðsk Þ ¼
ðk − 1Þπ∕2. (b) The reconstruction results from PSA and II-PSA.
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Table 1 Standard deviations σ of the reconstruction error under different uneven illumination distributions (unit: radian).

Noise level

σ ¼ 1 σ ¼ 3 σ ¼ 5 σ ¼ 10 σ ¼ 15

Lðx; yÞ ¼ 100 − 0.2x PSA 0.22 0.22 0.23 0.25 0.29

II-PSA 0.01 0.04 0.06 0.12 0.19

Lðx; yÞ ¼ 100 − ½ðx−12826 Þ2 þ ðy−12826 Þ2� PSA 0.11 0.11 0.12 0.15 0.19

II-PSA 0.01 0.03 0.05 0.10 0.16

Lðx; yÞ ¼ 100exp½ðx−128220 Þ2 þ ðy−128220 Þ2� PSA 0.12 0.12 0.13 0.16 0.21

II-PSA 0.01 0.03 0.06 0.11 0.17
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Fig. 5 Reconstruction results based on a two-dimensional model. (a) The calibrated illumination pattern. (b) One of the fringe images for recon-
struction. (c) The synthetic phase. (d) and (e) The errors during reconstruction from PSA and II-PSA, respectively.
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Fig. 7 The comparison of the reconstruction results with PSA and II-PSA. (a) One of the fringe images on a polycrystal wafer; the marked region is
the current reconstruction region. (b) The reconstructed profile from PSA. (c) The reconstructed profile from II-PSA. (d) The 1D cross-section
profiles from the middle rows of the profiles in (b) and (c).

Fig. 6 A real surface reconstruction system is applied in the semiconductor industry for solar wafer inspection. (a) A color picture of a typical
polycrystal wafer. To qualify the wafer before solar energy application, we need to reconstruct its surface for inspection. (b) The physical
setup of our surface reconstruction system. A: wafer under inspection, B: conveyor belt for transferring wafers, (c) camera arrays for top view
reconstruction, (d) projector arrays for top view reconstruction, E: camera arrays for bottom view reconstruction, F: projector arrays for bottom
view reconstruction. When a wafer enters our system through the conveyor belt, the top view cameras capture the sinusoidal patterns from the
corresponding projectors for reconstructing the top surface of the wafer. Similarly, the bottom view cameras and projectors are used for recon-
structing the bottom surface of the wafer.
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5 Conclusions
In this paper and its earlier conference version,26 we propose
an IRF model to characterize the uneven illumination factor
for phase-measuring profilometry, and we develop an II-PSA
to reconstruct the surface profile of moving objects. When
uneven illumination is a dominant error source in phase-mea-
suring profilometry, such as in our solar wafer inspection
system, we can calibrate the illumination distribution before-
hand based on this novel IRF model. Then we can use the
proposed II-PSA to remove the periodic error pattern intro-
duced by the uneven illumination. Experimental results show
that our algorithm can significantly improve the reconstruc-
tion quality both visually and numerically.
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