11 research outputs found

    Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice

    Get PDF
    Ion channel-controlled cell volume regulation is of fundamental significance to the physiological function of sperm. In addition to volume regulation, LRRC8A-dependent volume-regulated anion channel (VRAC) activity is involved in cell cycle progression, insulin signaling, and cisplatin resistance. Nevertheless, the contribution of LRRC8A and its dependent VRAC activity in the germ cell lineage remain unknown. By utilizing a spontaneous Lrrc8a mouse mutation (c.1325delTG, p.F443*) and genetically engineered mouse models, we demonstrate that LRRC8A-dependent VRAC activity is essential for male germ cell development and fertility. Lrrc8a-null male germ cells undergo progressive degeneration independent of the apoptotic pathway during postnatal testicular development. Lrrc8a-deficient mouse sperm exhibit multiple morphological abnormalities of the flagella (MMAF), a feature commonly observed in the sperm of infertile human patients. Importantly, we identified a human patient with a rare LRRC8A hypomorphic mutation (c.1634G>A, p.Arg545His) possibly linked to Sertoli cell-only syndrome (SCOS), a male sterility disorder characterized by the loss of germ cells. Thus, LRRC8A is a critical factor required for germ cell development and volume regulation in the mouse, and it might serve as a novel diagnostic and therapeutic target for SCOS patients

    A Novel Peptide from Polypedates megacephalus Promotes Wound Healing in Mice

    No full text
    Amphibian skin contains wound-healing peptides, antimicrobial peptides, and insulin-releasing peptides, which give their skin a strong regeneration ability to adapt to a complex and harsh living environment. In the current research, a novel wound-healing promoting peptide, PM-7, was identified from the skin secretions of Polypedates megacephalus, which has an amino acid sequence of FLNWRRILFLKVVR and shares no structural similarity with any peptides described before. It displays the activity of promoting wound healing in mice. Moreover, PM-7 exhibits the function of enhancing proliferation and migration in HUVEC and HSF cells by affecting the MAPK signaling pathway. Considering its favorable traits as a novel peptide that significantly promotes wound healing, PM-7 can be a potential candidate in the development of novel wound-repairing drugs

    Anti-Toxoplasma gondii Effects of a Novel Spider Peptide XYP1 In Vitro and In Vivo

    No full text
    Toxoplasmosis, caused by an obligate intracellular parasite Toxoplasma gondii, is one of the most prevalent zoonoses worldwide. Treatments for this disease by traditional drugs have shown numerous side effects, thus effective alternative anti-Toxoplasma strategies or drugs are urgently needed. In this study, a novel spider peptide, XYP1, was identified from the cDNA library of the venom gland of the spider Lycosa coelestis. Our results showed that XYP1 has potent anti-Toxoplasma activity in vitro and in vivo. Specifically, treatment with XYP1 significantly inhibited the viability, invasion and proliferation of tachyzoites with low cytotoxicity (IC50 = 38.79 μΜ) on human host cells, and increased the survival rate of mice acutely infected with T. gondii. Next, scanning electron microscopy, transmission electron microscopy and RNA sequencing were employed to further explore the functional mechanism of XYP1, and the results indicated that XYP1 causes membrane perforation, swelling and disruption of tachyzoites, which could be closely associated with differential expression of several membrane-associated proteins including HSP29. In conclusion, XYP1 may be a promising new drug candidate for the treatment of toxoplasmosis

    Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice

    No full text
    International audienceIon channel-controlled cell volume regulation is of fundamental significance to the physiological function of sperm. In addition to volume regulation, LRRC8A-dependent volume-regulated anion channel (VRAC) activity is involved in cell cycle progression, insulin signaling, and cisplatin resistance. Nevertheless, the contribution of LRRC8A and its dependent VRAC activity in the germ cell lineage remain unknown. By utilizing a spontaneous Lrrc8a mouse mutation (c.1325delTG, p.F443*) and genetically engineered mouse models, we demonstrate that LRRC8A-dependent VRAC activity is essential for male germ cell development and fertility. Lrrc8a-null male germ cells undergo progressive degeneration independent of the apoptotic pathway during postnatal testicular development. Lrrc8a-deficient mouse sperm exhibit multiple morphological abnormalities of the flagella (MMAF), a feature commonly observed in the sperm of infertile human patients. Importantly, we identified a human patient with a rare LRRC8A hypomorphic mutation (c.1634G>A, p.Arg545His) possibly linked to Sertoli cell-only syndrome (SCOS), a male sterility disorder characterized by the loss of germ cells. Thus, LRRC8A is a critical factor required for germ cell development and volume regulation in the mouse, and it might serve as a novel diagnostic and therapeutic target for SCOS patients

    The bioelectrochemical synthesis of high-quality carbon dots with strengthened electricity output and excellent catalytic performance

    No full text
    © 2019 The Royal Society of Chemistry. The emergence of microbial fuel cell (MFC) technology that can effectively recycle renewable energy from organic pollutants has been regarded as a promising and environmentally friendly route that could be widely used in numerous fields. Here, a novel sustainable self-energy conversion system was successfully constructed to renewably synthesize carbon dots (CDs) via in situ coupling with a MFC system. Interestingly, the generation of CDs was found to largely enhance the electricity production performance of the MFC. Lowerature electron paramagnetic resonance (EPR) spectroscopic measurements and electrochemical characterization analysis results confirmed that the as-prepared CDs exhibited wide-conversion fluorescence properties and exposed carbon-rich active oxygen sites, and demonstrated a suitable band gap as well as excellent electrocatalytic performance. As a result, the prepared CDs possess high photo-bioelectrocatalytic activity for efficient H 2 production, reaching 9.58 μmol h -1 . Remarkably, CD-derived photocatalytic ink presented excellent contaminant elimination activity at the solid-solid interface. Thus, this work will provide a new platform for catalyst construction via a bio-assisted method towards the next generation of nano-photocatalytic inks for indoor contaminant removal
    corecore