151 research outputs found

    Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek's Disease Virus.

    Get PDF
    Marek's Disease Virus (MDV) is an avian alpha-herpesvirus that only spreads from cell-to-cell in cell culture. While its cell-to-cell spread has been shown to be dependent on actin filament dynamics, the mechanisms regulating this spread remain largely unknown. Using a recombinant BAC20 virus expressing an EGFPVP22 tegument protein, we found that the actin cytoskeleton arrangements and cell-cell contacts differ in the center and periphery of MDV infection plaques, with cells in the latter areas showing stress fibers and rare cellular projections. Using specific inhibitors and activators, we determined that Rho-ROCK pathway, known to regulate stress fiber formation, and Rac-PAK, known to promote lamellipodia formation and destabilize stress fibers, had strong contrasting effects on MDV cell-to-cell spread in primary chicken embryo skin cells (CESCs). Inhibition of Rho and its ROCKs effectors led to reduced plaque sizes whereas inhibition of Rac or its group I-PAKs effectors had the adverse effect. Importantly, we observed that the shape of MDV plaques is related to the semi-ordered arrangement of the elongated cells, at the monolayer level in the vicinity of the plaques. Inhibition of Rho-ROCK signaling also resulted in a perturbation of the cell arrangement and a rounding of plaques. These opposing effects of Rho and Rac pathways in MDV cell-to-cell spread were validated for two parental MDV recombinant viruses with different ex vivo spread efficiencies. Finally, we demonstrated that Rho/Rac pathways have opposing effects on the accumulation of N-cadherin at cell-cell contact regions between CESCs, and defined these contacts as adherens junctions. Considering the importance of adherens junctions in HSV-1 cell-to-cell spread in some cell types, this result makes of adherens junctions maintenance one potential and attractive hypothesis to explain the Rho/Rac effects on MDV cell-to-cell spread. Our study provides the first evidence that MDV cell-to-cell spread is regulated by Rho/Rac signaling

    The Marek’s disease virus (MDV) protein encoded by the UL17 ortholog is essential for virus growth

    Get PDF
    Marek’s disease virus type 1 (MDV-1) shows a strict dependency on the direct cell-to-cell spread for its propagation in cell culture. As MDV-1 shows an impaired nuclear egress in cell culture, we wished to address the characterization of capsid/tegument genes which may intervene in the maturation of intranuclear capsids. Orthologs of UL17 are present in all herpesviruses and, in all reported case, were shown to be essential for viral growth, playing a role in capsid maturation and DNA packaging. As only HSV-1 and PrV UL17 proteins have been characterized so far, we wished to examine the role of MDV-1 pUL17 in virus replication. To analyze MDV-1 UL17 gene function, we created deletion mutants or point mutated the open reading frame (ORF) to interrupt its coding phase. We established that a functional ORF UL17 is indispensable for MDV-1 growth. We chose to characterize the virally encoded protein by tagging the 729 amino-acid long protein with a repeat of the HA peptide that was fused to its C-terminus. Protein pUL17 was identified in infected cell extracts as an 82 kDa protein which localized to the nucleus, colocalizing with VP5, the major capsid protein, and VP13/14, a major tegument protein. By using green fluorescent protein fusion and HA tagged proteins expressed under the cytomegalovirus IE gene enhancer/promoter (PCMV IE), we showed that MDV-1 pUL17 nuclear distribution in infected cells is not an intrinsic property. Although our results strongly suggest that another viral protein retains (or relocate) pUL17 to the nucleus, we report that none of the tegument protein tested so far were able to mediate pUL17 relocation to the nucleus

    Fusion of Small Peroxisomal Vesicles in Vitro Reconstructs an Early Step in the in Vivo Multistep Peroxisome Assembly Pathway of Yarrowia lipolytica

    Get PDF
    We have identified and purified six subforms of peroxisomes, designated P1 to P6, from the yeast, Yarrowia lipolytica. An analysis of trafficking of peroxisomal proteins in vivo suggests the existence of a multistep peroxisome assembly pathway in Y. lipolytica. This pathway operates by conversion of peroxisomal subforms in the direction P1, P2→P3→P4→P5→P6 and involves the import of various peroxisomal proteins into distinct vesicular intermediates. We have also reconstituted in vitro the fusion of the earliest intermediates in the pathway, small peroxisomal vesicles P1 and P2. Their fusion leads to the formation of a larger and more dense peroxisomal vesicle, P3. Fusion of P1 and P2 in vitro requires cytosol and ATP hydrolysis and is inhibited by antibodies to two membrane-associated ATPases of the AAA family, Pex1p and Pex6p. We provide evidence that the fusion in vitro of P1 and P2 peroxisomes reconstructs an actual early step in the peroxisome assembly pathway operating in vivo in Y. lipolytica

    Affimer proteins are versatile and renewable affinity reagents

    Get PDF
    Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications

    Atrophy of primary lymphoid organs induced by Marek's disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia

    Get PDF
    Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy. Here, by in situ TUNEL assay, we demonstrate that MDV infection results in a high level of apoptosis in the thymus and bursa of Fabricius, which is concomitant to the MDV lytic cycle. Interestingly, we observed that in the thymus most of the MDV infected cells at 6 days post-infection (dpi) were apoptotic, whereas in the bursa of Fabricius most of the apoptotic cells were uninfected suggesting that MDV triggers apoptosis by two different modes in these two primary lymphoid organs. In addition, a high decrease of cell proliferation was observed from 6 to 14 dpi in the bursa of Fabricius follicles, and not in the thymus. Finally, with an adapted absolute blood lymphocyte count, we demonstrate a major B-lymphopenia during the two 1st weeks of infection, and propose this method as a potent non-invasive tool to diagnose MDV bursa of Fabricius infection and atrophy. Our results demonstrate that the thymus and bursa of Fabricius atrophies are related to different cell mechanisms, with different temporalities, that affect infected and uninfected cells

    Marek's disease virus morphogenesis

    No full text
    International audienceMarek's disease virus (MDV) is a highly contagious virus that induces T-lymphoma in chicken. This viral infection still circulates in poultry flocks despite the use of vaccines. With the emergence of new virulent strains in the field over time, MDV remains a serious threat to the poultry industry. More than 40 yr after MDV identification as a herpesvirus, the visualization and purification of fully enveloped infectious particles remain a challenge for biologists. The various strategies used to detect such hidden particles by electron microscopy are reviewed herein. It is now generally accepted that the production of cell-free virions only occurs in the feather follicle epithelium and is associated with viral, cellular, or both molecular determinants expressed in this tissue. This tissue is considered the only source of efficient virus shedding into the environment and therefore the origin of successful transmission in birds. In other avian tissues or permissive cell cultures, MDV replication only leads to a very low number of intracellular enveloped virions. In the absence of detectable extracellular enveloped virions in cell culture, the nature of the transmitted infectious material and its mechanisms of spread from cell to cell remain to be deciphered. An attempt is made to bring together the current knowledge on MDV morphogenesis and spread, and new approaches that could help understand MDV morphogenesis are discussed
    corecore