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Summary Eukaryotic cells are characterized by a
multicompartmental structure with a variety of or-
ganelles. Vesicular transport between these com-
partments requires membrane fusion events. Based
on a membrane topology view, we conclude that
there are two basic mechanisms of membrane fusion,
namely where the membranes first come in contact
with the cis-side (the plasmatic phase of the lipid
bilayer) or with the trans-side (the extra-plasmatic
face). We propose to designate trans-membrane fu-
sion processes as “endoplasmosis” as they lead to
uptake of a compartment into the plasmatic phase.
Vice versa we suggest the term “exoplasmosis” (as
already suggested in a 1964 publication) for cis-mem-
brane fusion events, where the interior of a vesicle is
released to an extraplasmatic environment (the extra-
cellular space or the lumen of a compartment). This
concept is supported by the fact that all cis- and all
trans-membrane fusions, respectively, exhibit notice-
able similarities implying that they evolved from two
functionally different mechanisms.
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Endoplasmose und Exoplasmose: Entwicklungs-
prinzipien der Endo- und Exozytose sowie des ve-
sikuldren Transports

Zusammenfassung Eukaryotische Zellen besitzen
eine Multi-Kompartiment-Struktur mit unterschiedli-
chen Organellen. Vesikulédrer Transport zwischen den
Kompartimenten erfordert Membranfusionsprozes-
se. Bei Betrachtung aus Sicht der Membrantopologie
kann man schlieBen, dass es 2 grundsitzliche Mecha-
nismen der Membranfusion gibt: einerseits solche,
bei denen die Membranen zuerst mit der cis-Seite
(der plasmatischen Seite der Membrandoppelschicht)
in Kontakt treten, und andererseits solche, bei denen
sich die trans-Seiten zuerst beriihren (die extraplas-
matischen Seiten). Der Autor schlédgt die Bezeichnung
»Endoplasmose* fiir alle trans-Membranfusionen vor,
da sie zu einer Aufnahme eines Kompartiments in
die plasmatische Phase fiihren, und vice versa die
Bezeichnung ,Exoplasmose“ (wie bereits 1964 in
einer Publikation vorgeschlagen) fiir alle cis-Mem-
branfusionen, wo das Innere eines Vesikels in einen
extraplasmatischen Raum entladen wird (den Extra-
zelluldrraum oder das Lumen eines Kompartiments).
Dieses Konzept wird durch die Tatsache unterstiitzt,
dass alle cis- bzw. alle trans-Membranfusionen be-
merkenswerte Ahnlichkeiten zeigen, was darauf hin-
deutet, dass sie aus 2 funktionell unterschiedlichen
Mechanismen entstanden sind.

Schliisselworter Lipiddoppelschicht - Membranfu-
sion - Eukaryotische Zellen - Extrazelluldrraum
Membrane - Endozytose - Exozytose

List of abbreviations
ARF ADP-ribosylation factor
COP  coat protein complex
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Fig. 1 General scheme of
the compartmental struc-
ture of eukaryotic cells and
vesicular transport pro-
cesses. Examples of differ-
entintracellular organelles
are outlined. Plasmatic ©
domains areinred and plas-

matic membrane surfaces @ carrier vesicle
inred thick lines, nonplas-

matic spheresareinblueand
extraplasmatic membrane

exoplasmosis
surfacesinblack lines. En- @ '\p endocytic
doplasmosis (the budding of Golgi © > _ © compartment
vesicles into a plasmatic en- EtKlopiasmosts

vironment, due to fusion of @

extraplasmatic membrane

surfaces)isindicated by
red arrows; exoplasmosis ER
(release of vesicle contents
into nonplasmatic domains
after cis-membrane fusion)
is outlined by blue arrows
/’1——\ mitochondrion
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cargo

endoplasmosis

Texoplasmosis
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receptor ligand
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Fig. 2 General mechanism of trans- and cis-membrane fusion events. The extraplasmatic sides of membranes (trans-sides) are
showninblue, the plasmatic faces in red (cis-sides). The upper part shows the budding of a vesicle into the plasmatic phase (endo-
plasmosis), characterized by the assembly of coat complexes and the segregation of fluid phase cargo or receptor-ligand complexes
by afission process, whichis actually driven by atrans-membrane fusion event. Thelower part shows the fusion of avesicle with atar-
getmembrane (exoplasmosis). Rab GTPases, their effector proteins, SNARE proteins and accessory factors (such as NSF or SNAPs)
areinvolved inthese cis-membrane fusion processes

ER endoplasmic reticulum Introduction

GTPase guanosine triphosphatase

NSF N-ethylmaleimide sensitive factor While Darwin developed his theory of evolution for
SNAP soluble NSF attachment protein the macrobiological world, it is becoming increasingly
SNARE SNAP receptor evident that the general concept of evolution also ap-

plies to the cellular and subcellular world. In gen-
eral, a central characteristic of all known organisms is
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Fig. 3 Structural similarities between different coat com-
plexes: Components of the clathrin, COPland COPII coats

are shownin a structural schematic view. Coat structures are
shown in green; adaptor complexes in blue and GTPasesinred.
(Adapted from[6, 16])

their compartmentalisation, their delimitation from
the surrounding environment. This compartmentali-
sation is a prerequisite for the generation and mainte-
nance of electrochemical gradients that are essential
for the energy processes of life. In contrast to prokary-
otes, which consist in principle of only one “reac-
tion compartment”, eukaryotes are characterised by
a multicompartmental structure of various organelles
within one common compartment. One of the cru-
cial questions in that respect is how the intracellu-
lar organelles of eukaryotes evolved. The cytoplasmic
membrane, which functions as the ultimate border
of a cell, separates a cytoplasmic from an extra-cy-
toplasmic phase, or in other terms a plasmatic from
a nonplasmatic sphere. Due to the multicompart-
mental organisation of eukaryotes, the cell contains

» Clathrin

b

COPII COPI
Sec13
. 0
[

internal nonplasmatic domains, namely all the com-
partments that are enclosed by a single lipid bilayer,
like the endoplasmic reticulum (ER), the Golgi, endo-
somes or lysosomes.

Organelles that are enclosed by two lipid bilayers
like chloroplasts or mitochondria exhibit a nonplas-
matic intermembrane space, but their internal lumen
is defined as plasmatic sphere comparable to the cy-
toplasm ([2, 3]; Fig. 1). This view is in agreement with
the commonly accepted hypothesis that they were
taken up from the extracellular environment by an-
cient pre-eukaryotes as endosymbionts [4-7]. Another
organelle enclosed by two membranes is the nucleus,
which is thought to have evolved from the ER [8] and
which contains a plasmatic lumen that is linked to the
cytosol via nuclear pore complexes that are permeable
for ions and small proteins.

An evolutionary perspective of vesicular
transport

An important question in the evolution of eukary-
otic cells is how the compartments arose, which are
enclosed by a single membrane. The common expla-
nation is that they were originally formed by invagina-
tion and internalization of the cytoplasmic membrane
[9]. Interestingly, these first endomembranes might
have had rather secretory functions than features
of current endocytic compartments given that cer-
tain GTPases of the secretory pathway seem to have
evolved before those of the endocytic pathway [10].
Regardless of how these first endomembranes formed
and whether they were more endocytic or more secre-
tory in nature, they can be regarded as “internalized
extracellular space”. From this point of view, it is

3
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Fig. 4 Structural conservation between distinct vesicular coat complexes occurring at the cell surface, ER or Golgi membranes.

(Reprinted with permission from Macmillan Publishers Ltd [27])
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Fig. 5 AlignmentofhumanRab GTPases andallocationto theirmainintracellular organelles: homologous amino acids are shownin
different shades of red. The main localizations of the GTPases were obtained from reference [29]

a provoking but intriguing aspect to regard all non-
plasmatic compartments within the cell as spheres,
which are in some way functionally outside of the cell.
The ER for instance can be regarded as first outstation
of the cell in the course of secretion, which might have
evolved as an internalised and specialised part of the
cytoplasmic membrane [9]. Molecules that are co- or
posttranslationally transported into the lumen of the
ER are therefore equivalent to proteins secreted from
prokaryotes. Strikingly, the ER and other organelles
are not synthesised de novo in developing cells, but
handed over from parental cells (“omnis membrana e
membrana” [9]), supporting the notion that the com-
partmental organisation of eukaryotes is not encoded
in the genome, but directly inherited. This notion
also suggests that the eukaryotic ancestor cells must
have had biological membranes [11]. The structure
of eukaryotic cells with plasmatic and nonplasmatic
spheres implies that the lipid bilayers, which form the
membrane of organelles or the boundary between the
cytoplasm and the extracellular environment, exhibit
a plasmatic (or cis-) and an extraplasmatic (or trans-)
face [3]. Endocytosis and exocytosis, as well as the
membrane traffic within the cell require fusion and
budding events that are all based on membrane fu-
sion, where either the plasmatic or the extraplasmatic
faces of two lipid bilayers first come in contact. These
processes can be designated as cis- or trans-mem-
brane fusion events, respectively. As a consequence
of this view, we propose to designate all trans-mem-
brane fusion processes (where the extraplasmatic
membrane surfaces first come in contact) with the
term “endoplasmosis’, meaning an uptake of a vesicle
or membrane compartment into a plasmatic phase.
Vice versa, all cis-membrane fusion processes can
be termed as “exoplasmosis” meaning that a com-
partment fuses with a membrane with the two cis-
sides coming into contact first, resulting in the re-
lease of the cargo into a nonplasmatic phase (Figs. 1
and 2). It has to be stated that the term “exoplas-
mosis” was used in an early publication on leukocyte
degranulation in 1964 [1], but has not been applied
systematically since then. Using these terms has the
advantage of emphasizing conceptual similarities be-

tween different processes of endocytosis, exocytosis
and vesicular transport as they stress the two underly-
ing basic principles from a cell topology perspective.
Endoplasmosis then subsumes processes such as the
first step of endocytosis, or the budding and forma-
tion of carrier vesicles, for instance from ER, Golgi
stacks or endosomes. Exoplasmosis would be the su-
perordinate term for fusion of secretory vesicles with
the plasma membrane, the fusion of carrier vesicles
with target membranes and all other cis-membrane
fusion events, where vesicles functionally leave the
plasmatic sphere.

This concept is in line with the fact that there
are many similarities between different forms of en-
doplasmosis or exoplasmosis, meaning trans- and
cis-membrane fusion events, respectively. A com-
mon feature of endoplasmosis is the requirement for
coat proteins at the plasmatic face of the membrane
(Fig. 2). For endocytic internalisation, these coats can
consist of clathrin [12] or caveolin [13, 14]. Further-
more, clathrin-coated areas can also be detected on
the trans-Golgi network [12] and under certain cir-
cumstances also on sorting endosomes [15]. Along the
exocytic route, the budding and formation of carrier
vesicles from ER en route to the intermediate com-
partment requires COP-II (coat protein complex II)
containing coats [16]. Finally, recycling of vesicles to
the ER, as well as transport within the Golgi is depen-
dent on COP-I [17-20]. Some of these coat proteins
that are characteristic for the exocytic pathway (COP-I
and ARF [ADP-ribosylation factor]) were also detected
on endosomal membranes [21].

Thus, all these examples of trans-membrane fu-
sion events, which can be subsumed as endoplasmo-
sis events, are characterised by the formation of coat
structures at the cytosolic face of the membrane [22,
23], which seems to be important for generating a cur-
vature of the membrane preceding the budding pro-
cess [24-26]. This view of a general principle under-
lying all these trans-membrane fusions events is sup-
ported by the fact that coat subunits from functionally
distinct coats such as clathrin, COPI and COPII coats
exhibit noticeable structural similarities with {3-pro-
peller and a-solenoid elements in a specific common
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Fig. 6 Phylogenetic analysis of Qa-type SNARE proteins: Up-
per part: Human syntaxins specific for various organelles are
compared; lower part: the respective Qa proteins from S. cere-
visiae are shown

arrangement (Fig. 3; reviewed in [6]). Furthermore,
the proteins involved bind to each other in a way that
leads to a very similar molecular architecture of the
coat complex on the membrane as illustrated in Fig. 4
(reviewed in [27]) pointing at a common evolutionary
origin of trans-membrane fusion events.

On the other hand, cis-membrane fusion processes
from clearly different organelles also show striking
mechanistic similarities as well as sequence homolo-
gies of the proteins that are involved therein. This
holds true for fusion of carrier vesicles with target
membranes in Golgi transport, fusion of secretory
granules with the cytoplasmic membrane or endo-
some fusion, which are all dependent on certain fu-
sion factors such as NSF (N-ethylmaleimide sensitive
factor), SNAPs (soluble NSF attachment proteins),
SNAREs (SNAP receptors) and Rab family GTPases
(guanosine triphosphatases) (Fig. 2; [28-39]). The
evolutionary coherence of all these distinct mem-
brane fusion processes is well demonstrated by the
strong conservation and high degree of homology of
Rab GTPases, which are important regulators of cis-
membrane fusions at completely different organelles
and locations within the cell (Fig. 5). Significant
homologies are also found for other fusion factors
such as SNARE proteins—and again their functional
role seems to be the same for all the different cis-
membrane fusion processes at distinct organelles
within the cell. Phylogenetic analysis of the Qa fam-
ily of human SNARE proteins (syntaxins) for various
endomembranes reveals clear links, with syntaxins
located at endosomes being closely related to syn-
taxins of the trans-Golgi network and slightly more
distant to those of secretory vesicles. A very similar
phylogenetic tree is observed for the Qa proteins of
yeast (Fig. 6). However, in the latter case the proteins
are more related to each other suggesting that higher
order organisms developed a higher diversity of these
fusion factors. While these sequence analyses clearly
point at a common evolutionary origin of the different
cis-membrane fusion processes, it is also clear that in
current organisms and cells a high level of specificity
is observed for cis-membrane fusion events of dis-
tinct intracellular compartments. This specificity is

crucial for maintaining the functional integrity of the
organelles, an ordered progress of vesicular transport
and the “identity” of the membrane compartments.
The available data indicate a model, in which all cis-
membrane fusions go back to an ancient process of
“exoplasmosis”, which was then altered by evolution-
ary diversification forming specific organelles and
well-controlled fusion processes.

Conclusion

Based on the similarities between different membrane
fusion processes, we suggest that there are two gener-
ally distinct mechanisms of membrane fusion, namely
endoplasmosis (trans-membrane fusion) and exoplas-
mosis (cis-membrane fusion), which are the mecha-
nistic ancestors of all the cellular membrane fusion
events. These two basic principles of membrane fu-
sion might be the origin for the evolution of the eu-
karyotic endomembrane system, which developed its
complexity by diversification of the components, fi-
nally defining the identities of intracellular compart-
ments and regulating the membrane traffic between
them [40-42].

Acknowledgements Open access funding provided by Medi-
cal University of Vienna.

Compliance with ethical guidelines

Conflict of interest J.A. Schmid states that there are no com-
peting interests.

Ethical standards The accompanying manuscript does not
include studies on humans or animals.

Open Access This article is distributed under the terms of
the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which per-
mits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the origi-
nal author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Zucker-Franklin D, Hirsch JG. Electron Microscope Studies
On The Degranulation Of Rabbit Peritoneal Leukocytes
DuringPhagocytosis. ] Exp Med. 1964;120:569-576.

2. Blobel G. Intracellular protein topogenesis. Proc Natl Acad
SciUSA. 1980;77(3):1496-1500.

3. Duve C de, Hardy NO. A Guided Tour Of The Living
Cell, vol. 1: Scientific American Library. Quart Rev Biol.
1985;60(4):497.

4. Cavalier-Smith T. The phagotrophic origin of eukaryotes
and phylogenetic classification of Protozoa. IntJ Syst Evol
Microbiol. 2002;52(2):297-354.

5. Gray MW, Doolittle WE Has the endosymbiont hypothesis
been proven? Microbiol Rev. 1982;46(1):1-42.

6. Gurkan C,KoulovAV, BalchWE. An evolutionaryperspective
on eukaryotic membrane trafficking. Adv Exp Med Biol.
2007;607:73-83.

240 Endoplasmosis and exoplasmosis, the 2 basic membrane fusions

@ Springer



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Sagan L. On the origin of mitosing cells. ] Theor Biol.

1967;14(3):255-274.

. Jekely G. Glimpsing over the event horizon: evolution of

nuclear pores and envelope. Cell Cycle. 2005;4(2):297-299.

. Duve Cde. The origin of eukaryotes: areappraisal. NatRev

Genet. 2007;8(5):395-403.

Jékely G. Small GTPases and the evolution of the eukaryotic
cell. Bioessays. 2003;25(11):1129-1138.

Jekely G. Did the last common ancestor have a biological
membrane? Biol Direct. 2006;1(1):35.

Pearse BM, Robinson MS. Clathrin, adaptors, and sorting.
AnnuRevCellBiol. 1990;6:151-171.

Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR,
Anderson RG. Caveolin, a protein component of caveolae
membrane coats. Cell. 1992;68(4):673-682.

Lebbink MN, Jiménez N, Vocking K, Hekking LH, Verkleij
AJ, Post JA. Spiral Coating of the Endothelial Caveolar
Membranes as Revealed by Electron Tomography and
Template Matching. Traffic. 2010;11(1):138-150.
Stoorvogel W, Oorschot V, Geuze HJ. A novel class of
clathrin-coated vesicles budding from endosomes. J Cell
Biol. 1996;132(1-2):21-33.

Gurkan C, Stagg SM, LaPointe P, Balch WE. The COPII cage:
unifying principles of vesicle coat assembly. Nat Rev Mol
CellBiol. 2006;7(10):727-738.

Aridor M, Balch WE. Principles of selective transport: coat

complexesholdthekey. Trends Cell Biol. 1996;6(8):315-320.

Bethune J, Wieland E Moelleken J. COPI-mediated trans-
port. ] Membr Biol. 2006;211(2):65-79.

Harter C. COP-coated vesicles in intracellular protein
transport. FEBS Lett. 1995;369(1):89-92.

Wieland E Hartert C. Mechanisms of vesicle formation:
Insights from the COP system. Curr Opin Cell Biol.
1999;11(4):440-446.

Whitney JA, Gomez M, Sheff D, Kreis TE, Mellman I.
Cytoplasmic coat proteins involved in endosome function.
Cell. 1995;83(5):703-713.

Faini M, Beck R, Wieland FT, Briggs JAG. Vesicle coats:
structure, function, and general principles of assembly.
Trends Cell Biol. 2013;23(6):279-288.

Jackson LP, Kiimmel D, Reinisch KM, Owen DJ. Struc-
tures and mechanisms of vesicle coat components and
multisubunit tethering complexes. Curr Opin Cell Biol.
2012;24(4):475-483.

Jackson LP. Structure and mechanism of COPI vesicle
biogenesis. Curr Opin Cell Biol. 2014;29:67-73.

25

26.

27.

28.

29.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

. Derganc J, Antonny B, Copi¢ A. Membrane bending:

the power of protein imbalance. Trends Biochem Sci.
2013;38(11):576-584.

Stachowiak JC, Brodsky FM, Miller EA. A cost-benefit anal-
ysis of the physical mechanisms of membrane curvature.
NatCellBiol. 2013;15(9):1019-1027.

Harrison SC, Kirchhausen T. Structural biology: Conserva-
tioninvesicle coats. Nature. 2010;466(7310):1048-1049.
Gurkan C, Lapp H, Alory C, SuAl, Hogenesch JB, Balch WE.
Large-Scale Profiling of Rab GTPase Trafficking Networks:
The Membrome. Mol Biol Cell. 2005;16(8):3847-3864.
Stenmark H. Rab GTPases as coordinators of vesicle traffic.
NatRevMol Cell Biol. 2009;10(8):513-525.

. Denesvre C, Malhotra V. Membrane fusion in organelle

biogenesis. Curr Opin Cell Biol. 1996;8(4):519-523.

Kienle N, Kloepper TH, Fasshauer D. Differences in the
SNARE evolution offungi and metazoa. Biochem Soc Trans.
2009;37(4):787-791.

Rossi V, Picco R, Vacca M, D’Esposito M, D’Urso M, Galli
T, Filippini E VAMP subfamilies identified by specific
R-SNARE motifs. Biol Cell. 2004;96(4):251-256.
Rothman]E.Mechanismsofintracellularproteintransport.
Nature. 1994;372(6501):55-63.

RothmanJE. The protein machinery of vesicle budding and
fusion. Protein Sci. 1996;5(2):185-194.

Sudhof TC, Rothman JE. Membrane fusion: grappling with
SNARE and SM proteins. Science. 2009;323(5913):474-477.
McNew JA, Sondermann H, Lee T, Stern M, Brandizzi E
GTP-dependentmembranefusion. AnnuRev Cell Dev Biol.
2013;29:529-550.

Rizo]J, Stidhof TC. The membrane fusion enigma: SNAREs,
Secl/Muncl8 proteins, and their accomplices--guilty as
charged? AnnuRev Cell DevBiol. 2012;28:279-308.
Risselada HJ, Grubmiiller H. How SNARE molecules
mediate membrane fusion: recentinsights from molecular
simulations. Curr Opin StructBiol. 2012;22(2):187-196.
Jena BP. Role of SNAREs in membrane fusion. Adv Exp Med
Biol. 2011;713:13-32.

Dacks]B, Field MC. Evolution of the eukaryotic membrane-
trafficking system: origin, tempo and mode. J Cell Sci.
2007;120(17):2977-2985.

Dacks]JB, Peden AA, Field MC. Evolution of specificity in the
eukaryoticendomembrane system. Int] Biochem Cell Biol.
2009;41(2):330-340.

Dacks JB, Poon PP, Field MC. Phylogeny of endocytic
components yields insight into the process of nonen-
dosymbiotic organelle evolution. Proc Natl Acad Sci U SA.
2008;105(2):588-593.

@ Springer

Endoplasmosis and exoplasmosis, the 2 basic membrane fusions

241




	Endoplasmosis and exoplasmosis: the evolutionary principles underlying endocytosis, exocytosis, and vesicular transport
	Summary
	Zusammenfassung
	Introduction
	An evolutionary perspective of vesicular transport
	Conclusion
	References


