76 research outputs found

    MGL2+ Dermal Dendritic Cells Are Sufficient to Initiate Contact Hypersensitivity In Vivo

    Get PDF
    BACKGROUND:Dendritic cells (DCs) are the most potent antigen-presenting cells in the mammalian immune system. In the skin, epidermal Langerhans cells (LCs) and dermal dendritic cells (DDCs) survey for invasive pathogens and present antigens to T cells after migration to the cutaneous lymph nodes (LNs). So far, functional and phenotypic differences between these two DC subsets remain unclear due to lack of markers to identify DDCs. METHODOLOGY/PRINCIPAL FINDINGS:In the present report, we demonstrated that macrophage galactose-type C-type lectin (MGL) 2 was exclusively expressed in the DDC subset in the skin-to-LN immune system. In the skin, MGL2 was expressed on the majority (about 88%) of MHCII(+)CD11c(+) cells in the dermis. In the cutaneous LN, MGL2 expression was restricted to B220(-)CD8alpha(lo)CD11b(+)CD11c(+)MHCII(hi) tissue-derived DC. MGL2(+)DDC migrated from the dermis into the draining LNs within 24 h after skin sensitization with FITC. Distinct from LCs, MGL2(+)DDCs localized near the high endothelial venules in the outer T cell cortex. In FITC-induced contact hypersensitivity (CHS), adoptive transfer of FITC(+)MGL2(+)DDCs, but not FITC(+)MGL2(-)DCs into naive mice resulted in the induction of FITC-specific ear swelling, indicating that DDCs played a key role in initiation of immune responses in the skin. CONCLUSIONS/SIGNIFICANCE:These results demonstrated the availability of MGL2 as a novel marker for DDCs and suggested the contribution of MGL2(+) DDCs for initiating CHS

    EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges

    Get PDF
    Despite advances in surgery and adjuvant regimes, gastrointestinal malignancy remains a major cause of neoplastic mortality. Immunotherapy is an emerging and now successful treatment modality for numerous cancers that relies on the manipulation of the immune system and its effector functions to eradicate tumour cells. The discovery that the pan-epithelial homotypic cell adhesion molecule EpCAM is differentially expressed on gastrointestinal tumours has made this a viable target for immunotherapy. Clinical trials using naked anti EpCAM antibody, immunoconjugates, anti-idiotypic and dendritic cell vaccines have met variable success. The murine IgG2a Edrecolomab was shown to reduce mortality and morbidity at a level slightly lower than treatment with 5FU and Levamisole when administered to patients with advanced colorectal carcinoma in a large randomised controlled trial. Fully human and trifunctional antibodies that specifically recruit CD3-positive lymphocytes are now being tested clinically in the treatment of minimal residual disease and ascites. Although clinical trials are in their infancy, the future may bring forth an EpCAM mediated approach for the effective activation and harnessing of the immune system to destroy a pathological aberrance that has otherwise largely escaped its attention

    Enhancement of metastatic ability by ectopic expression of ST6GalNAcI on a gastric cancer cell line in a mouse model

    Get PDF
    ST6GalNAcI is a sialyltransferase responsible for the synthesis of sialyl Tn (sTn) antigen which is expressed in a variety of adenocarcinomas including gastric cancer especially in advanced cases, but the roles of ST6GalNAcI and sTn in cancer progression are largely unknown. We generated sTn-expressing human gastric cancer cells by ectopic expression of ST6GalNAcI to evaluate metastatic ability of these cells and prognostic effect of ST6GalNAcI and sTn in a mouse model, and identified sTn carrier proteins to gain insight into the function of ST6GalNAcI and sTn in gastric cancer progression. A green fluorescent protein-tagged human gastric cancer cell line was transfected with ST6GalNAcI to produce sTn-expressing cells, which were transplanted into nude mice. STn-positive gastric cancer cells showed higher intraperitoneal metastatic ability in comparison with sTn-negative control, resulting in shortened survival time of the mice, which was mitigated by anti-sTn antibody administration. Then, sTn-carrying proteins were immunoprecipitated from culture supernatants and lysates of these cells, and identified MUC1 and CD44 as major sTn carriers. It was confirmed that MUC1 carries sTn also in human advanced gastric cancer tissues. Identification of sTn carrier proteins will help understand mechanisms of metastatic phenotype acquisition of gastric cancer cells by ST6GalNAcI and sTn

    Glycobiology of immune responses

    Get PDF
    Unlike their protein roommates and their nucleic acid cousins, carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the non-template nature of their synthesis and the resulting heterogeneity. While this Annals of the NYAS issue does not claim to hold all of the answers, the goal is to highlight what is known about how carbohydrates and their binding partners, on the microbial (non-self), tumor (altered-self) and host (self) sides, cooperate within the immune system while identifying areas of great opportunity to those willing to take up the challenge. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as proteins, nucleic acids, and lipids. In this introductory article we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs and galectins) and their contribution to the biology of the immune responses in physiologic and pathologic settings.Fil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Van Kooyk, Yvette. VU University Amsterdam. VU University Medical Center; Países BajosFil: Cobb, Brian A.. Case Western Reserve University; Estados Unido

    Local effects of regulatory T cells in MUC1 transgenic mice potentiate growth of MUC1 expressing tumor cells in vivo.

    Get PDF
    MUC1 transgenic (MUC1.Tg) mice have widely been used as model recipients of cancer immunotherapy with MUC1. Although MUC1.Tg mice have previously been shown to be immunologically tolerant to MUC1, the involvement of regulatory T (Treg) cells in this phenotype remains unclear. Here, we showed that numbers of Treg cells in MUC1-expressing tumors were greater in MUC1.Tg mice than in control C57BL/6 (B6) mice, and that the growth of tumor cells expressing MUC1, but not that of control cells, in MUC1. Tg mice was faster than in B6 mice. The MUC1.Tg mice appeared to develop MUC1-specific peripheral tolerance, as transferred MUC1-specific T cells were unable to function in MUC1.Tg mice but were functional in control B6 mice. The suppressive function of CD4(+)CD25(high) cells from MUC1.Tg mice was more potent than that of cells from control B6 mice when Treg cell activity against MUC1-specific T cells was compared in vitro. Therefore, the enhanced growth of MUC1-expressing tumor cells in MUC1.Tg mice is likely due to the presence of MUC1-specific Treg cells
    corecore