48 research outputs found

    Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate composites

    Get PDF
    This study presents a novel approach for finite element modeling of the elastic behavior of a plain-woven reinforced single polymer laminate composites (WSPC) based on polyamide 6 (PA6). These composites are produced via compression molding of PA6 woven textile structures that are powder-coated by anionic PA6 microparticles. Morphological and structural analysis complemented by electron microscopy, image processing and X-ray diffraction suggest the presence of transcrystalline layer (TCL) at the matrix-reinforcement interface. Having in mid this experimental fact, a novel procedure is developed for finite level discretization of TCL in the representative volume element (RVE) during tensile straining. The procedure correlates the material properties with the overall load applied, thus adequately modelling the tensile behavior of the WSPC based on the constituent materials. The stress field along the elements of the RVE model is studied while the tensile loads were applied in two principal directions. A good agreement between the real mechanical behavior and that calculated based on the model was demonstrated.IPC and 2C2T gratefully acknowledge the support of the project TSSiPRO-NORTE-01-0145-FEDER-000015 funded by the regional operational program NORTE 2020, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund. The authors affiliated to 2C2T acknowledge also partial funding from FCT - Fundação para a CiĂȘncia e a Tecnologia within the projects POCI- 01-0145-FEDER-007136 and UID/CTM/00264. S.D. Tohidi thanks to FCT for the PhD Grant SFRH/BD/94759/2013. N. Dourado acknowledges FCT for the financial support through the projects UID/EEA/04436/2013 and POCI-01-0145-FEDER-006941. M. Rezazadeh acknowledges the support provided by FEDER and FCT funds through project POCI-01-0145-FEDER-029485. N.Q. Quyền thanks for the financial support of FCT through the project PESTUID/CTM/00264. A. Zille also acknowledges the FCT Investigator Research contract IF/00071/2015. S. Hesseler and T. Gries gratefully acknowledge the financial support of German Science Foundation (DFG) through the project RE1057/41. Z. Z. Denchev and N. V. Dencheva acknowledge the support by National Funds through FCT, project UID/CTM/50025/2019. N. Dencheva is also grateful for the financial support of FCT in the frames of the strategic project UID/CTM/50025/2013 and the personal program-contract CTTI-51/18-IP

    Astropy: A Community Python Package for Astronomy

    Get PDF
    We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

    The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package

    Get PDF
    The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project

    The Astropy Project: Building an inclusive, open-science project and status of the v2.0 core package

    Get PDF
    The Astropy project supports and fosters the development of open-source and openly-developed Python packages that provide commonly-needed functionality to the astronomical community. A key element of the Astropy project is the core package Astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of inter-operable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy project

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Transforming polymer blends into composites: a pathway towards nanostructured materials

    No full text
    Polymer blends and polymer-based composites are two of themost rapidly developing groups of materials being of industrial, as well as of academic, interest. More than a decade ago a new group of polymer materials was introduced, which became known under the name ‘microfibrilar composites’ (MFCs). They were obtained by the transformation of blends of thermoplastic polymers into micro- or nanostructured systems by combination of appropriate mechanical and thermal treatments. Since then, the importance of these novel materials, both for theory and for engineering practice, has increased significantly. It is an objective of this review to outline the place of MFCs within the whole variety of polymer-based composites. Furthermore, the methods of their preparation, the ways of investigating their structure and the relation of the structure and mechanical properties are discussed. Ultimately, an evaluation of the future trends in this exiting interdisciplinary research field is attempted
    corecore