678 research outputs found

    Tzitzeica solitons versus relativistic Calogero–Moser three-body clusters

    Get PDF
    We establish a connection between the hyperbolic relativistic Calogero–Moser systems and a class of soliton solutions to the Tzitzeica equation (also called the Dodd–Bullough–Zhiber–Shabat–Mikhailov equation). In the 6N-dimensional phase space Omega of the relativistic systems with 2N particles and N antiparticles, there exists a 2N-dimensional Poincaré-invariant submanifold OmegaP corresponding to N free particles and N bound particle-antiparticle pairs in their ground state. The Tzitzeica N-soliton tau functions under consideration are real valued and obtained via the dual Lax matrix evaluated in points of OmegaP. This correspondence leads to a picture of the soliton as a cluster of two particles and one antiparticle in their lowest internal energy state

    Observation of the Halo of NGC 3077 Near the "Garland" Region Using the Hubble Space Telescope

    Get PDF
    We report the detection of upper main sequence stars and red giant branch stars in the halo of an amorphous galaxy, NGC3077. The observations were made using Wide Field Planetary Camera~2 on board the Hubble Space Telescope. The red giant branch luminosity function in I-band shows a sudden discontinuity at I = 24.0 +- 0.1 mag. Identifying this with the tip of the red giant branch (TRGB), and adopting the calibration provided by Lee, Freedman, & Madore (1993) and the foreground extinction of A_B = 0.21 mag, we obtain a distance modulus of (m-M)_0 = 27.93 +- 0.14(random) +- 0.16(sys). This value agrees well with the distance estimates of four other galaxies in the M81 Group. In addition to the RGB stars, we observe a concentration of upper main sequence stars in the halo of NGC3077, which coincides partially with a feature known as the ``Garland''. Using Padua isochrones, these stars are estimated to be <150 Myrs old. Assuming that the nearest encounter between NGC3077 and M81 occurred 280 Myrs ago as predicted by the numerical simulations (Yun 1997), the observed upper main sequence stars are likely the results of the star formation triggered by the M81-NGC3077 tidal interaction.Comment: 15 pages, 8 figures. Accepted for publication in Astrophysical Journa

    Pulsed Flows Along a Cusp Structure Observed with SOO/AIA

    Get PDF
    We present observations of a cusp-shaped structure that formed after a flare and coronal mass ejection on 14 February 2011. Throughout the evolution of the cusp structure, blob features up to a few Mm in size were observed flowing along the legs and stalk of the cusp at projected speeds ranging from 50 to 150 km/sec. Around two dozen blob features, on order of 1 - 3 minutes apart, were tracked in multiple AlA EUV wavelengths. The blobs flowed outward (away from the Sun) along the cusp stalk, and most of the observed speeds were either constant or decelerating. We attempt to reconstruct the 3-D magnetic field of the evolving structure, discuss the possible drivers of the flows (including pulsed reconnect ion and tearing mode instability), and compare the observations to studies of pulsed reconnect ion and blob flows in the solar wind and the Earth's magnetosphere

    Degradation mechanism analysis in temperature stress tests on III-V ultra-high concentrator solar cells using a 3D distributed model

    Get PDF
    A temperature stress test was carried out on GaAs single-junction solar cells to analyze the degradation suffered when working at ultra-high concentrations. The acceleration of the degradation was realized at two different temperatures: 130 °C and 150 °C. In both cases, the degradation trend was the same, and only gradual failures were observed. A fit of the dark I–V curve at 25 °C with a 3D distributed model before and after the test was done. The fit with the 3D distributed model revealed degradation at the perimeter because the recombination current in the depletion region of the perimeter increased by about fourfold after the temperature stress test. Therefore, this test did not cause any morphological change in the devices, and although the devices were isolated with silicone, the perimeter region was revealed as the most fragile component of the solar cell. Consequently, the current flowing beneath the busbar favors the progression of defects in the device in the perimeter region

    VALIDATION OF ENVISAT-1 LEVEL-2 PRODUCTS RELATED TO LOWER ATMOSPHERE O3 AND NOy CHEMISTRY BY A FTIR QUASI-GLOBAL NETWORK

    Full text link
    A coordinated action involving eleven stations of the ground-based Network for Detection of Stratospheric Change (NDSC) equipped with Fourier transform infrared (FTIR) instruments was conducted to contribute to the validation of the three atmospheric chemistry instruments onboard ENVISAT, that are MIPAS, SCIAMACHY and GOMOS. The target products for validation are total columns of O3, CH4, CO and some important NOy species (NO2, HNO3, NO) and the source gas N2O. Together the eleven stations cover the latitudes between 79 °N and 78°S, including polar, mid -latitude and subtropical and tropical locations. The goal is to contribute to the assessment of the data quality of the aforementioned ENVISAT instruments, from a quasi-global perspective. The period of intensive ground-based data collection for the benefit of the ENVISAT Validation Commissioning Phase that is dealt with in the present paper is July 15 to December 1, 2002. The FTIR network involved collected a data set corresponding to an equivalent of approximately 400 days of measurements; about three quarter of the data have already been submitted to the ENVISAT Calval database and are included in the present work. Unfortunately, the distribution of ENVISAT data has been slow and limited. Only a limited number of coincidences has been found for making data inter-comparisons. Therefore, the conclusions drawn in this paper are very preliminary and cover only a limited set of data products from SCIAMACHY only. Our findings up to now concerning the above mentioned target products are the following: (1) SCIAMACHY near infrared operational products (CO, CH4, N2O) have no scientific meaning yet, (2), the operational SCIAMACHY total vertical O3 column product derived in the ultraviolet window has undergone some improvements with changing versions of the processor(s) but it still underestimates the column by about 5 – 10 %, (3), the operational SCIAMACHY total vertical O3 column product derived in the visible window is unrealistically large, and (3), the operational NO2 total column product from SCIAMACHY seems to largely overestimate the real column, but very few coincidences and large dispersions of the data do inhibit any further conclusion at present. In a next phase, the same ground-based correlative data set will be exploited to further validate the ENVISAT data as soon as more and reprocessed data will be distributed

    Mapping Luminous Blue Compact Galaxies with VIRUS-P: morphology, line ratios and kinematics

    Full text link
    [abridged] We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction and excitation mechanisms of their warm interstellar medium (ISM). IFS data for five luminous BCGs were obtained using VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7m Harlan J. Smith Telescope at the McDonald Observatory. VIRUS-P consists of a square array of 247 optical fibers, which covers a 109"x109" field of view, with a spatial sampling of 4.2" and a 0.3 filling factor. We observed in the 3550-5850 Angstrom spectral range, with a resolution of 5 A FWHM. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines ([OII]3727, Hgamma, Hbeta and [OIII]5007), and investigate the morphology of diagnostic emission-line ratios and the extinction patterns in the ISM as well as stellar and gas kinematics. Additionally, from integrated spectra we infer total line fluxes and luminosity-weighted extinction coefficients and gas-phase metallicities. All galaxies exhibit an overall regular morphology in the stellar continuum, while their warm ISM morphology is more complex: in II Zw 33 and Mrk 314, the star-forming regions are aligned along a chain-structure; Haro 1, NGC 4670 and III Zw 102 display several salient features, such as extended gaseous filaments and bubbles. A significant intrinsic absorption by dust is present in all galaxies, the most extreme case being III Zw 102. Our data reveal a manifold of kinematical patterns, from overall regular gas and stellar rotation to complex velocity fields produced by structurally and kinematically distinct components.Comment: Accepted for publication in A&A. 16 pages, 10 figure

    Do current and magnetic helicities have the same sign?

    Get PDF
    Current helicity, H c , and magnetic helicity, H m , are two main quantities used to characterize magnetic fields. For example, such quantities have been widely used to characterize solar active regions and their ejecta (magnetic clouds). It is commonly assumed that H c and H m have the same sign, but this has not been rigorously addressed beyond the simple case of linear force-free fields. We aim to answer whether H m H c ≥ 0 in general, and whether it is true over some useful set of magnetic fields. This question is addressed analytically and with numerical examples. The main focus is on cylindrically symmetric straight flux tubes, referred to as flux ropes (FRs), using the relative magnetic helicity with respect to a straight (untwisted) reference field. Counterexamples with H m H c &lt; 0 have been found for cylindrically symmetric FRs with finite plasma pressure, and for force-free cylindrically symmetric FRs in which the poloidal field component changes direction. Our main result is a proof that H m H c ≥ 0 is true for force-free cylindrically symmetric FRs where the toroidal field and poloidal field components are each of a single sign, and the poloidal component does not exceed the toroidal component. We conclude that the conjecture that current and magnetic helicities have the same sign is not true in general, but it is true for a set of FRs of importance to coronal and heliospheric physics

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
    corecore