
                                                                    

University of Dundee

Do current and magnetic helicities have the same sign?

Russell, A. J. B. ; Demoulin, P.; Hornig, G.; Pontin, D. I.; Candelaresi, S.

Published in:
Astrophysical Journal

DOI:
10.3847/1538-4357/ab40b4

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Russell, A. J. B., Demoulin, P., Hornig, G., Pontin, D. I., & Candelaresi, S. (2019). Do current and magnetic
helicities have the same sign? Astrophysical Journal, 884(1), 11. https://doi.org/10.3847/1538-4357/ab40b4

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Nov. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/237180042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3847/1538-4357/ab40b4
https://discovery.dundee.ac.uk/en/publications/791f91ee-5b8e-44f1-afaa-396745f8164d
https://doi.org/10.3847/1538-4357/ab40b4


Do Current and Magnetic Helicities Have the Same Sign?

A. J. B. Russell1 , P. Demoulin2 , G. Hornig1 , D. I. Pontin1 , and S. Candelaresi1
1 Mathematics, School of Science & Engineering, University of Dundee, Nethergate, Dundee DD1 4HN, UK; a.u.russell@dundee.ac.uk, g.hornig@dundee.ac.uk,

d.i.pontin@dundee.ac.uk, s.candelaresi@dundee.ac.uk
2 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, F-92195 Meudon,

France; pascal.demoulin@obspm.fr
Received 2018 September 6; revised 2019 August 29; accepted 2019 August 29; published 2019 October 11

Abstract

Current helicity, Hc, and magnetic helicity, Hm, are two main quantities used to characterize magnetic fields. For
example, such quantities have been widely used to characterize solar active regions and their ejecta (magnetic clouds). It
is commonly assumed that Hc and Hm have the same sign, but this has not been rigorously addressed beyond the simple
case of linear force-free fields. We aim to answer whether HmHc�0 in general, and whether it is true over some useful
set of magnetic fields. This question is addressed analytically and with numerical examples. The main focus is on
cylindrically symmetric straight flux tubes, referred to as flux ropes (FRs), using the relative magnetic helicity with
respect to a straight (untwisted) reference field. Counterexamples with HmHc<0 have been found for cylindrically
symmetric FRs with finite plasma pressure, and for force-free cylindrically symmetric FRs in which the poloidal field
component changes direction. Our main result is a proof that HmHc�0 is true for force-free cylindrically symmetric
FRs where the toroidal field and poloidal field components are each of a single sign, and the poloidal component does
not exceed the toroidal component. We conclude that the conjecture that current and magnetic helicities have the same
sign is not true in general, but it is true for a set of FRs of importance to coronal and heliospheric physics.

Key words: magnetic fields – Sun: corona – Sun: heliosphere

1. Introduction

A helicity integral measures the linking of the flux of a
divergence-free field, as was originally proven in the classical
paper by Moffatt (1969) in the context of a vorticity field, and
later made more precise by Arnold (2014). This important
topological result equally applies to a magnetic field, or to the
current density when the displacement current is negligible.
Hence, two useful helicities—magnetic helicity and current
helicity—are available in the study of magnetic fields. This
paper explores one of the most fundamental questions about the
relationship between those helicities: for a given magnetic field,
do the current and magnetic helicities have the same sign?

Magnetic helicity is a physical invariant under conditions that
are typical of many astrophysical plasmas, which raises helicity to
the same special status as energy and momentum. Furthermore,
helicity provides a mathematical toolset for interpreting the
handedness of magnetic fields, which, in less mathematical form,
has a history dating back at least a century, since it can be found in
work by this journal’s founder, George Ellery Hale, and colleagues
at the Mount Wilson Solar Observatory (e.g., Hale 1908; Hale
et al. 1919). With these strengths, helicity has become widely
applied to topics as diverse as magnetohydrodynamic (MHD)
turbulence, magnetic dynamos, magnetic reconnection, turbulent
relaxation (e.g., Taylor relaxation), accretion disk jets, coronal
mass ejections (CMEs), coronal heating, solar filaments, active-
region sigmoids, accumulation of magnetic shear at polarity
inversion lines (PILs), the solar wind, and planetary magneto-
spheres, which are well represented in the article collections of
Brown et al. (1999) and Buechner & Pevtsov (2003).

This article focuses on the sign of helicity, which is widely
used in its own right. For example, the relative handedness
of a pair of magnetic flux tubes is a major factor in whether
and how they reconnect (Parker 1983; Linton et al. 2001;
Wright 2019), which is one possibility for powering a solar
flare or eruption. Hence, our title question has direct bearing on
approaches to space weather forecasting that aim to assess
when conditions favor magnetic reconnection. In another
flagship application, the dominant signs of helicity at different
latitudes and at different length scales provide important tests
of solar dynamo models. The latitudinal tests encompass Hale’s
polarity law for active-region magnetograms, Joy’s law for the
tilt of sunspot pairs, and the hemispheric helicity rule that
operates on the “chirality” of features from the scale of the
quiet Sun, through active regions and filaments, to magnetic
clouds in interplanetary space (see the review by Pevtsov et al.
2014, and references therein). Tests across different length
scales (e.g., Singh et al. 2018) are motivated by the idea that
cross-scale transport of helicity allows a dynamo to efficiently
produce helicity at one scale by offsetting this with oppositely
signed helicity at another scale, which is a feature of α-driven
dynamos (Seehafer et al. 2003; Brandenburg & Subramanian
2005). Thus, ambiguity about the helicity’s sign would
complicate efforts to reject or accept hypotheses about the
origin of the Sun’s magnetic field.

1.1. Magnetic and Current Helicities

To quantify the linking of magnetic flux for a given magnetic
field, B, in a volume V, one first finds a vector potential A such
that B=∇×A. Then, the basic integral for magnetic helicity is

ò= B AH dV .m
V

·

A potential problem with this is that the integrand is not
uniquely defined by the magnetic field (which is the field we
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observe) because B only defines A to within addition of a
gradient. This gauge issue resolves itself if B is fully contained
within V B n( · =0 on the boundary of V where n is the
surface normal) because in these cases the integral turns out to
be independent of the gauge, and the integral can be precisely
interpreted in terms of the Gauss linking number. However, if
magnetic fields pass through the boundary of V then the above
equation produces Hm B( , A), not a unique Hm B( ). A solution to
this problem is to instead work with the relative magnetic
helicity, which measures linking of magnetic field lines with
respect to a reference field (Berger & Field 1984). The usual
expression for relative helicity (Finn & Antonsen 1985) is

ò= - +B B A AH dV , 1m
V

ref ref( ) · ( ) ( )

where =  ´B Aref ref is the reference field, with =B n·
B nref · on the boundary of V. This Hm is gauge-independent,
although it does depend on the choice of reference field.

The current helicity is

ò= J BH dV , 2c
V

· ( )

where the current density is J=∇×B, having set μ0=1.
The value of Hc so defined is uniquely determined by B,
independent of the chosen gauge. We do note, though, that Hc

can only be rigorously interpreted in terms of the linking of
currents within V after applying considerations equivalent to
those for Hm discussed above.

Comparing the two helicities, Equations (1) and (2), the
advantages of the current helicity are that it is based on locally
observable quantities and it is uniquely defined in all situations,
unlike the relative magnetic helicity, which requires integration to
find the vector potential and depends on a choice of reference field
(Démoulin 2007; Pevtsov et al. 2014). Meanwhile, the magnetic
helicity has the advantage of being a useful conserved quantity:
magnetic helicity is exactly conserved in ideal MHD and it is
approximately conserved during magnetic reconnection at high
magnetic Reynolds numbers, the value of Hm varying on a
significantly longer timescale than the magnetic energy (Tay-
lor 1974; Berger 1984; Pariat et al. 2015). In broad terms then, the
magnetic helicity is commonly preferred by theorists but the
current helicity is more readily available to observers.

This motivates the general question: are the two helicities related
in some useful way? More specifically and at the most
fundamental level of comparison: do they even have the same
sign? In general, or over some useful set of magnetic fields relevant
to solar and interplanetary physics? This question is interesting
purely as a fundamental question about magnetic structure as well.

1.2. Flux Ropes in Solar/Interplanetary Physics

The paper will make particular study of flux ropes (FRs),
which are twisted magnetic flux tubes, a magnetic structure
commonly encountered in many domains of plasma physics.

In the Sun, FRs are typically formed and amplified by the
dynamo in the solar convective zone, in particular at its base,
and when they become buoyantly unstable or are carried
upward by convective motions, they may cross the photosphere
to fill the corona with magnetic fields. Thus, FRs are a keystone
of magnetoconvection and the build-up of active regions (e.g.,
Fan 2009; Hood et al. 2009a; Martínez-Sykora et al. 2015). At
the photospheric level, the magnetic field is observed to be

concentrated in FRs: the largest ones form sunspots, and a full
spectrum of FR sizes is observed down to the highest spatial
resolutions currently observable (e.g., Borrero & Ichimoto
2011; Stenflo 2017). Coronal FRs are central to major models
of flares and CMEs (e.g., Forbes 2000; Török et al. 2004;
Aulanier et al. 2010). The interplanetary consequences of
CMEs are observed in situ by spacecraft, as clearly identified
FRs called magnetic clouds (e.g., Dasso et al. 2005; Lepping
et al. 2006). Here, a full spectrum in size of FRs, with a power
law, is observed (e.g., Feng et al. 2008; Janvier et al. 2014).
FRs are also present in laboratory experiments, especially those
designed to understand solar flares/CMEs (e.g., Tripathi &
Gekelman 2013; Wongwaitayakornkul et al. 2017).

1.3. Electric Current Neutralization

Magnetic fields generally contain electric currents, and the
question of whether or not solar FRs have a total electric current
has been the subject of much attention and debate. As an example
of this question’s importance, the presence of a finite total current
parallel to the FR axis is a critical issue for some CME models,
because the driving force, the hoop force, depends quadratically
on this total current (see Forbes 2000; Török et al. 2004; Aulanier
et al. 2010). The amount of total current is also an issue for the
amount of current helicity (as will be shown explicitly in
Section 2.2), hence we must decide whether to make our analysis
applicable to un-neutralized FRs.
If the line integral B rd∮ · around an FR is zero, then the

total current is zero by Ampère’s law and Stokes’s theorem.
However, as we will discuss in detail below, observations of
the photospheric PIL in active regions frequently show a
horizontal magnetic field component along the PIL, sufficient
to make any line integral around one magnetic polarity non-
zero, thus indicating a net current. If one trusts the
measurements, then it makes sense in such cases to treat the
FR as un-neutralized, presumably having become separated
from neutralizing currents that remained under the photosphere.
The following paragraphs provide more detail and references.
Flux ropes with the simplest twist profile have a direct

current in the core, flowing parallel to the magnetic field for
positively twisted FRs, surrounded by a so-called return current
all around. Melrose (1995) argued from magnetic and flare
observations that direct current should dominate, so that solar
FRs are un-neutralized and should be rooted deep below the
photosphere. This was contested by Parker (1996), who argued
that FRs should be current-neutralized in the convective zone
since FRs are localized by convection in small regions, and so
the circulation of B around an FR, and hence the total current,
should vanish. In the same paper, Parker also suggested reasons
why the measurements might be doubted.
Observationally, deriving the electric current from the

photospheric magnetic field has several difficulties, e.g.,
calibration, the 180° ambiguity on the transverse magnetic
field, off disk-center problems, measurements at different
height due to fibril structures, and spatial averaging of
unresolved structures. Within all these limitations, recent
studies from different groups continue to find that the direct
current is typically greater than the surrounding return current,
so in each magnetic field polarity (+/−) of an active region the
electric current is un-neutralized (e.g., Wheatland 2000;
Venkatakrishnan & Tiwari 2009; Georgoulis et al. 2012;
Gosain et al. 2014). Also, Dalmasse et al. (2015) recently
concluded that un-neutralized currents are present, using the
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line-integral approach to measure net current, due to the finite
magnetic shear along the PIL, and suggested that un-
neutralized currents are to be generally expected in active
regions and other magnetic regions.

Valuable additional insight comes from un-neutralized
currents in numerical simulations with twisting motions applied
to initial potential fields, and with the emergence of an FR
across the photosphere (e.g., Aulanier et al. 2005; Leake et al.
2013; Török et al. 2014). In the simulations of flux emergence,
the initial FR is neutralized within the convective zone, as
advocated by Parker (1996), but only a fraction of the return
current crosses the photosphere, making for un-neutralized
current in each photospheric magnetic polarity. In other words,
during flux emergence, an initial current-neutralized structure
can split into two separate structures, one passing through the
solar surface and the other remaining below it, neither of which
is current-neutral by itself.

The conclusion of this discussion is that in this paper we will
allow for the possibility of FRs carrying a net current, as well
as fully current-neutral cases. Our arguments that HmHc�0
under certain conditions do not assume current neutralization,
and conversely our examples of HmHc<0 do not rely on a net
current.

1.4. The HmHc�0 Conjecture

Although it is not often stated explicitly, there seems to be a
heuristic in the community that flux tubes are either right- or
left-handed, with the assumption that the magnetic and current
helicities have the same sign, i.e., HmHc�0. As far as we
know, this was at best shown with some limited-scope
examples or with a warning that this is likely not general and
has not been proven rigorously (e.g., Seehafer 1990; Démoulin
2007; Pevtsov et al. 2014).

Observationally, such a principle is supported by studies
showing that supposed proxies of magnetic helicity—such as
the spiral pattern of chromospheric fibrils around sunspots,
magnetic shear along the photospheric inversion line of active
regions, magnetic tongues, and coronal sigmoids—typically
provide the same sign as the current helicity (e.g., Seehafer
1990; Abramenko et al. 1996; Pevtsov et al. 1997; Burnette
et al. 2004; Luoni et al. 2011; Poisson et al. 2015).

Within theory, the idea that HmHc�0, at least over some
useful set of magnetic fields, probably appeared empirically out
of experience of model magnetic fields. The conjecture holds
trivially for potential magnetic fields because = J 0

=H 0;c there is no linking of current in the absence of
current. The next type of force-free field usually encountered is
a linear force-free field with a=  ´ =J B B for constant
a ¹ 0 (we have set μ0=1). In this case, one can choose the
vector potential so that a=  ´ =B A A, which gives

ò ò

ò ò
a
a

a

= =

= =

 =

B A

J B

H dV B dV

H dV B dV

H H

1
,

,

.

m V V

c V V

c m

2

2

2

·

·

Thus, for linear force-free fields, HmHc�0 because Hm and Hc

both have the same sign as α. In this case, the result holds
because the J field is the same as the B field scaled by the
constant α; hence, fluxes of J and B have the same linking. The
helicity of linear force-free fields has been studied by Berger

(1985), Pevtsov et al. (1995), and Georgoulis & LaBonte
(2007) among others.
The purpose of this paper is to explore the HmHc�0

conjecture more generally, with a focus on FRs in MHD
equilibrium.

1.5. Structure of Paper

The paper is organized as follows. Section 2 sets out our FR
model with the main equations that must be solved. In
Section 3, a family of FRs with direct-return current structure is
explored, which highlights intuitive reasons why HmHc�0 is
likely to hold for many solar and heliospheric FRs. In
Section 4, we present counterexamples that show HmHc�0
does not hold in general, even for straight, cylindrically
symmetric force-free FRs. These examples and counterexam-
ples motivate the introduction of two further conditions, and we
prove in Section 5 that force-free cylindrically symmetric FRs
have the same sign of current and magnetic helicities under
assumptions of no field reversals and the poloidal component
not exceeding the toroidal component. The paper concludes
with discussion in Section 6 and a summary of the main
conclusions in Section 7.

2. Flux Rope Model

2.1. Straight Flux Rope Assumption

Writhe is known to have a significant role in determining
helicity (Călugăreanu 1959; Moffatt & Ricca 1992; Berger &
Prior 2006), and it is conceivable that the extra freedom
afforded by writhe might produce more cases where
HmHc<0, even under conditions that are sufficient to
guarantee HmHc�0 in straight FRs. However, from a practical
point of view, non-zero writhe complicates the modeling
enough that it is worthwhile to first examine the sign of HmHc

in straight FRs without writhe. We therefore devote this paper
to the simplified problem without writhe, and leave inclusion of
writhe to future work.

2.2. Main Equations

To quantitatively analyze cylindrically symmetric FRs, we
use cylindrical coordinates (r,f,z) where the z-axis is the central
axis of the FR, r is the radial coordinate, and f is the azimuthal
coordinate. Invariance of magnetic field components and
pressure is assumed in z and f. Then, =  ´B A and
=  ´J B (with m = 10 ) give

= = - =f fB B r
dA

dr
B r

r

d

dr
rA0, ,

1
, 3r

z
z( ) ( ) ( ) ( )

= = - =f fJ J r
dB

dr
J r

r

d

dr
rB0, ,

1
. 4r

z
z( ) ( ) ( ) ( )

To avoid singularities at r=0, we set Af(0)=0 and
Bf(0)=0.
The magnetic and current helicities will be evaluated for a

cylindrical volume p= ´ ´ +V R z z0, 0, 2 , 10 0[ ] [ ] [ ],
where R is the radius of the FR. The relative magnetic helicity
will be measured with respect to the untwisted reference field

=B eB rz zref ( ) with = f fA eA rref ( ) , and we will use gauge
freedom to set Az(R)=0 as a boundary condition. This gauge
choice of Az(R)=0 is natural because it means we work in the
gauge where winding with magnetic fields outside the FR is not
counted. However, since we use the gauge-invariant relative
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magnetic helicity, other gauge choices would lead to identical
results and conclusions.

Using the above, the relative magnetic helicity, Equation (1),
simplifies to

òp= f fH B r A r r dr4 . 5m

R

0
( ) ( ) ( )

It is sometimes easier to work with an alternative form, which
is derived by using Equation (3) to replace Bf then integrating
by parts, with the conditions Af(0)=0 and Az(R)=0, to get

òp=H B r A r r dr4 . 6m

R

z z
0

( ) ( ) ( )

The integrals in Equations (5) and (6) are equal despite having
¹ f fB r A r B r A rz z( ) ( ) ( ) ( ) in general.

Meanwhile, the current helicity becomes

òp= +f fH J B J B r dr2 . 7c

R

z z
0

( ) ( )

It is possible to eliminate either Jz or Jf using integration by
parts, which gives the pair of alternative expressions

òp= +f fH J B r dr IB R4 , 8c

R

z
0

( ) ( )

and

òp= -H J B r dr IB R4 , 9c

R

z z z
0

( ) ( )

where

òp p= = fI J r dr RB R2 2 10
R

z
0

( ) ( )

is the total current carried by the FR. In the special case of a
neutralized FR, Equations (8) and (9) are simplified by I=0.

2.3. Equilibrium Condition

To ensure relevance to solar and interplanetary conditions,
we restrict our search to FRs in magnetostatic equilibrium.
Thus, neglecting gravity for simplicity, we require

´ -  =J B P 0,

where P is the thermal pressure of the plasma. For a cylindrical
FR, this reduces to

- =f fJ B J B
dP r

dr
. 11z z

( ) ( )

If we allow an unbounded thermal pressure, then the
equilibrium condition is not actually a restriction because for
any magnetic field we can find a balancing pressure P(r) by
integrating Equation (11). We are only restricted by the
equilibrium condition when P(r) has been prescribed or is
bounded by some upper limit that is considered the maximum
pressure that is physically plausible. This includes looking for
force-free examples or counterexamples with ´ =J B 0,
which in cylindrical symmetry becomes

=f fJ B J B . 12z z ( )

A convenient way to build models satisfying Equation (11) is
to use Equation (4) to rewrite Equation (11) as force balance

between total pressure Ptot=P+B2/2 and magnetic tension:

+
+

= -f fd

dr
P

B B B

r2
. 13

z
2 2 2⎛

⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

Then, if Bf(r) and P(r) are specified, and so is the value of Bz at
r=0, the solution for the axial field (with Bf(0)=0 to avoid a
singularity in current density on the FR axis) is

ò= + - - -
¢

¢
¢f

f

14

B r B P P r B r
B r

r
dr0 2 0 2 2 .z z

r
2 2

0

2

( )

( ) ( ) ( ) ( ) ( )
( )

3. Examples with Direct-return Current Structure

FR models in solar physics are commonly structured with a
unidirectional axial magnetic field, and with a direct current in
the center of the tube enclosed by a surrounding return current
that completely or partially neutralizes the direct current (see
Ravindra et al. 2011; Dalmasse et al. 2015, and references
therein). In such a model there are intuitive reasons why
HmHc�0 is likely, as we explain here with the aid of some
examples.

3.1. Force-free FRs with Direct-return Current Structure

For concreteness, we will illustrate the arguments using a
particular set of model FRs. We look for a set of models where

=fB 0 0( ) to avoid current singularity at the origin, and where
Bf(r) has a single turning point so that the FR has a direct-
current region in the center surrounded by a return current. To
accommodate partially neutralized as well as fully neutralized
cases, we will make Bf(b)=0 at some radius b�R, where R
is the radius of the FR.
A simple function fulfilling these requirements is

= -f   B r fr b r r R b, 0 , 15n m( ) ( ) ( )

where n>0, m>0, b, and f are all constants. For all
Îr R0,[ ] (everywhere inside the FR) the poloidal field Bf(r)

has the same sign as the constant f. Using Equation (4),

= - + - + +- -J r fr b r n b m n r1 1 , 16z
n m1 1( ) ( ) (( ) ( ) ) ( )

so Jz has the same sign as the constant f for 0�r<rrev, and Jz
has the opposite sign to f for rrev<r, where

=
+

+ +
r

n

m n
b

1

1
17rev ( )

is the radius at which Jz reverses (which may be inside or
outside the FR we consider, depending on the choice of R).
To complete the model, the axial magnetic field is obtained

from Equation (14), setting P(r)=0 and Bz(0)=B0, where the
direction of the z-axis is chosen so that B0>0. We will always
choose f/B0 small enough that Bz has a single sign within the
FR, > " ÎB r r R0 0,z ( ) [ ], because reversals of the axial field
are not commonly considered in solar FRs (e.g., Priest 2014).
We also have a z-component to the vector potential, which
depends on the radius R considered as the boundary of the FR:

ò= ¢ ¢fA r R B r dr; , 18z
r

R
( ) ( ) ( )

which comes from Equation (3) and where this integral form
satisfies our chosen condition Az(R)=0. Note that within the
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FR (for Îr R0,[ ]), Az has the same sign as f. Finally,
the magnetic and current helicities are evaluated from
Equations (6) and (9).

3.2. Detailed Fully Neutralized Example

Figure 1 shows the model for n=1, m=1, and f/B0=2.
For calculation of Az, and hence magnetic helicity, we have set
R=b to consider a fully neutralized FR with total current
I=0. We have chosen units with B0=1 and b=1. Figure 1
(top) plots Bf, Bz, Jz, Az, and the force-free parameter α. These
have been scaled so that their spatial structure is easily seen on
a common set of axes. In particular, this plot shows that this
example has Bf�0 with a direct current in the FR core
(Jz> 0) and a return current at the periphery (Jz< 0).

This example has Hm=0.4058 and Hc=0.6841 to four
significant figures (4 sig. fig.), so it satisfies HmHc�0. Since
I=0 in this example, there is no boundary contribution to Hc,
and so one can draw conclusions about Hm and Hc by
inspecting the helicity integrands p=h r B r A r r4m z z( ) ( ) ( ) and

p=h J r B r r4c z z( ) ( ) (see Equations (6) and (9)). Figure 1
(bottom) shows hm and hc as a function of the radius r within
the FR. We have scaled hm by a factor of 10 so that its spatial
structure can be easily seen. While the values of Hm and Hc are
similar (with the selected normalization of B0 and R=b to
unity), they are reached in very different ways. In this model
FR, hm typically has a much smaller magnitude than hc, but hm
has a single sign everywhere whereas hc has two signs with the
positive part slightly dominating the integral (Figure 1 bottom).
As such, the question naturally arises: can Hm and Hc have
different signs if the balance of contributions in hc is different?

3.3. Further Fully Neutralized Examples

We surveyed an extensive set of fully neutralized models
with various values for f, n, and m. Figure 2 shows Hm and Hc

for the parameter space Îf 0.25, 0.5, 1, 2{ }, În 1, 4[ ],
Îm 1, 4[ ]. As expected, Hm and Hc both increase with f

(more twisted FRs). Hm and Hc also decrease for larger m and n
exponents, since Bf(r) is more concentrated in a layer located
between the center and border of the FR. In every case we have
checked, Hm and Hc have the same sign. This further motivates
the idea that FR magnetic and current helicities may have the
same sign under some widely applicable set of conditions; this
will be proven rigorously in Section 5, but first, some more
examples help to increase insight into reasons and necessary
conditions.

3.4. Detailed Partially Neutralized Example

To explore the impact of partial neutralization, we
recalculate the helicities for the example of Section 3.2 with
the FR boundary at different values of R�b=1. Changing R
leaves Bz, Bf, and Jz as in Figure 1 but subtracts a constant

Figure 1. A current-neutralized force-free FR, with a direct current enclosed by
a return current, that satisfies HcHm�0. This example has Bf=2r(1−r),
which gives Hm=0.4058 and Hc=0.6841 to four significant figures. Plotted
quantities are scaled for easy comparison of spatial structure. Top: magnetic
field components Bf (black solid) and Bz (red solid), axial current Jz (blue
dashed), axial component of the vector potential Az (green dashed–dotted), and
force-free parameter α=Jz/Bz (gold dotted). Bottom: helicity integrands

p=h B A r4m z z (light purple fill with solid edge) and p=h J B r4c z z (light blue
fill with dashed edge).

Figure 2. Magnetic helicity (top) and current helicity (bottom) for a range of
fully neutralized FRs with direct-return current structure produced by

= -fB fr r1n m( ) (Figure 1 shows a special case with f=2, = =n m 1).
Helicity values are shown as surfaces parameterized by m and n, for four values
of f: 0.25, 0.5, 1, and 2. The helicity values increase with increasing f, and
decrease with increasing m and n exponents (note that the vertical axes are
logarithmic). Both helicities have the same sign as Bf.
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from the original Az(r) to satisfy Az(R)=0 (see Equation (18))
and introduces a finite total current I (Equation (10)).
Following these changes through, Hm(R) and Hc(R) depend
on R as shown in Figure 3. We have scaled Hm so that it can be
easily seen on the same axes as Hc. Both helicities are positive
over the whole range of R, giving " ÎH H R b0 0,c m [ ].

3.5. Why HmHc�0 in These Models

In the models of Sections 3.2–3.4, Bz>0 and Az has the
same sign as f (since there is no reversal of Bf(r), see
Equation (18)). Therefore, referring to Equation (6), Hmf>0.

Looking at the current helicity, one can use Equation (10) to
write Equation (9) as

òp= -H rJ r B r B R dr2 2 , 19c

R

z z z
0

( )( ( ) ( )) ( )

which can be viewed as an integral of rJz weighted by
= -w r B r B R2 z z( ) ( ) ( ). Under uniform Bz, i.e., Bz(r)=

constant (this does not apply to the force-free model but it is
helpful in laying out the argument), Equation (19) would
reduce to Hc=IBz, where I is zero for a neutralized FR and it
has the same sign as f if the current is only partially neutralized,
giving Hcf�0 and HmHc�0. If we now allow Bz to vary, in
the cases we have considered Bz is on average stronger in the
direct-current region than in the return-current region, which
weights the integral for Hc further in favor of HmHc>0. This
is not yet a rigorous proof—that will be provided later—but it
provides useful insight into why the HmHc�0 conjecture
frequently holds in interplanetary/solar FRs, where the
axial field is typically expected to be strongest in the
FR core (e.g., Lepping et al. 2006; Borrero & Ichimoto
2011).

A corollary to the above is that if the FR is only partially
neutralized, as in Section 3.4, then the return current makes less
of a contribution to the Hc integral, so in these cases the direct
current has an even better chance of dominating to give
HmHc�0.

4. Counterexamples in Straight FRs

4.1. Magnetostatic Counterexample with Finite Pressure

Analysis of the examples in Section 3 showed that having
larger Bz in the direct-current region than in the return-current
region is an important reason for nonlinear force-free FRs
having HmHc�0. This immediately suggests that HmHc�0
can be violated by having a high enough pressure in the core of

the FR, which according to Equation (14) reduces Bz in the
high-pressure region (assuming that Bf is prescribed).
To confirm this, we took the same Bf(r) and Bz(0) as in

Section 3.2 but this time modified the FR by introducing

= -   P r

B

r

b
r R b1 , 0 , 20

0
2

4
⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )

and solving for the new Bz(r) from Equation (14) in the fully
neutralized case R=b=1. Figure 4 plots the key quantities in
the new FR, this time also showing P and the plasma beta,
β=P/Pm, where Pm=B2/2 is the magnetic pressure (recall
that μ0=1). For this FR, Hm=0.4917 and Hc=−1.838 to
4sig.fig., so we have found a straight-axis counterexample to
HmHc�0. Thus we conclude that HmHc�0 is not true for all
magnetostatic equilibria, even if we restrict ourselves to
cylindrical FRs with zero writhe and fully neutralized electric
current.

4.2. Force-free Counterexample

A natural next question is whether it is possible to have
HmHc<0 for a cylindrically symmetric FR that is force-free.
The answer is yes, as demonstrated by the field with

p= - =f  B r r r r R
1

2
sin 3 2 , 0 1, 21( ) ( ( )) ( )

and Bz(r) given by Equation (14) with = "P r r0( ) . The
magnetic field components and other quantities are plotted in
Figure 5. The sign of Bf(r) is selected to have Hm>0, and
since Bf(R)=0, the electric currents are fully neutralized.
This field has two signs of Bf, which produces Jz<0 at the

core of the FR and separately in a sheath near the outer
boundary, while Jz>0 in a layer between those regions. In

Figure 3. Magnetic and current helicities, Hm and Hc, as functions of the FR
radius R. As for the example of Figure 1, Bf=2r(1−r). The FR has non-zero
total current when R<1 and it is fully neutralized when R=1. Both helicities
are positive over the whole range of R.

Figure 4. Counterexample to HmHc�0 with high pressure in the FR core. The
same model and parameters are used as for Figure 1, except a thermal plasma
pressure is added following Equation (20) with a high thermal pressure in the
FR core. This configuration has Hm=0.4917 and Hc=−1.838 to 4sig.fig.,
so HmHc<0.
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particular, the contribution Jz<0 is significant in the FR core
where Bz is the largest. This provides a large negative
contribution to Hc on top of the one present at the FR
periphery. Az is also negative in the FR core, but with a smaller
magnitude and in a less extended region than Jz. This is also the
only region to make a negative contribution to the magnetic
helicity. The calculation of the helicities, Equations (6) and (9),
is a consequence of the above integrand behaviors (taking into
account the product with rBz) since this case is fully neutralized
(I=0). Calculation gives Hm=0.1604 and Hc=−0.06262
to 4sig.fig. We therefore have a nonlinear force-free counter-
example to the conjecture HmHc�0 (which is not in conflict
with the earlier results limited to linear force-free fields,
discussed in Section 1.4). More counterexamples can be
constructed by keeping the property of multiple reversals for
Jz, allowing one to choose the sign of Jz in the FR core where
the axial field is the strongest.

4.3. Applicability to Solar Environments

The counterexample of Section 4.1 has β∼1, which is to
say the thermal pressure in the FR is comparable to the
magnetic pressure, and it is in principle relevant to solar
environments including the photosphere and convection zone.
However, while it has a direct-return current structure, which is
generally assumed to be common, Bz is stronger at the
boundary of this FR (r=1) than it is at the center (r=0). A
sunspot, for example, with such a structure would be
considered highly unusual. Indeed, sunspots have lower plasma
pressure and a higher magnetic field than their surroundings.
Next, this counterexample does not apply to the solar corona,
which has a low plasma β, i.e., the thermal pressure is much
less than the magnetic pressure. Similarly, while the solar wind
at 1 au typically has a plasma β of order unity, magnetic clouds
have lower plasma β at their center than in the environment
(e.g., Lepping et al. 2006; Rodriguez et al. 2016), which is not
the case for the counterexample. We conclude that the

counterexamples due to a high plasma pressure in the core
are not relevant for FRs from the photosphere, to the corona, to
solar ejecta.
The counterexample of Section 4.2 is force-free and in

principle relevant to solar environments including the corona
and heliosphere. In particular, the axial field Bz is strongest in
the center of the flux tube. However, this FR has reversal of Bf,
which creates a more complicated nested current structure than
is assumed in most solar FR models, such as those considered
in Section 3. Nonetheless, Bf reversals have been seen in some
solar modeling, e.g., the simulation of helicity condensation of
Knizhnik et al. (2015).
The sense that the counterexamples are each in some way

unusual for the photosphere, corona, or heliosphere, combined
with the extensive set of examples found in Section 3,
motivates the question of whether HmHc�0 in a broad class
of scenarios relevant in solar and interplanetary contexts.

5. Proof of HmHc�0 for Force-free FRs without Field
Reversals or Very Large Twist

This section presents our main result: a proof that force-free
cylindrically symmetric FRs have the same sign of current and
magnetic helicities under the assumptions that there are no field
reversals inside the FR (Bz and Bf each have a single sign for
r� R) and that the poloidal component does not exceed the
toroidal component ( f B B 1z∣ ∣ ).
We start the proof by finding the sign of the relative

magnetic helicity, which is evaluated from Equation (6). Since
Bz has a single sign inside the FR, we can make Bz>0 simply
by orienting the coordinate system this way. Referring back to
Section 3.1, Az is determined by Equation (18) with Az(R)=0.
If " Îf B r R0 0,[ ], then Az is decreasing in the domain and
must be positive for r<R, thus Hm>0 since it is the integral
of a positive quantity. If " Îf B r R0 0,[ ], then Az is
increasing on the domain and must be negative, thus Hm<0
since it is the integral of a negative quantity. The sign of the
magnetic helicity is therefore the same as the sign of Bf.
We now turn to the current helicity. Referring to

Equation (8), using Equation (4) to substitute for Jf, and using
Equation (10) to substitute for I,

òp p= - +f fH B r
dB

dr
dr RB R B R4 2 . 22c

R
z

z
0

( ) ( ) ( )

The integral in Equation (22) is of the form

ò
p

=
-
+

f
f

+
f

n

B

B
B r

dB

dr
dr

4 1

2 1
23n

n R

z

n
z

1

0

2⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

with n=0. The key to our proof is that the sequence of fn has a
recursion property

= + ++f f g h , 24n n n n1 ( )

where

ò
p

=
- +
+ + f

f
+

g
n

n n
B

B

B
dr

4 1 2 2

2 1 2 3
, 25n

n R

z

n

0

2
2 1⎛

⎝⎜
⎞
⎠⎟

( ) ( )
( )( )

( )

p
=

-
+ + f

f
+

h
n n

RB R
B R

B r

4 1

2 1 2 3
. 26n

n

z

n
2
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⎝⎜

⎞
⎠⎟
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( )
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Figure 5. Force-free counterexample to HmHc�0, with Bf(r) defined by
Equation (21). The major difference to the case shown in Figure 1 is that Bf(r)
changes sign and Jz has two reversals. The sign of Bf(r) is chosen to have
Hm>0 for the full FR (the FR core has negative magnetic helicity).
Hm=0.1604 and Hc=−0.06262 to 4sig.fig., so HmHc<0.
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This is proved in the Appendix. Repeated application of
Equation (24) to (22), from n=0 to n=N−1, generates

p
p

p

= +
= + + + = ¼

= + å + å +

f

f

f=
-

=
-

H f RB R B R

f g h RB R B R

f g h RB R B R

2

2

2 . 27

c z

z

N n
N

n n
N

n z

0

1 0 0

0
1

0
1

( ) ( )
( ) ( )

( ) ( ) ( )

Furthermore

  ¥ " Îf f N
B

B
r R0 when if 1 0,

28

N
z

[ ]

( )

(the condition is sufficient but not necessary). Hence, in the
limit  ¥N , Equation (27) becomes

å å p= + + f
=

¥

=

¥

H g h RB R B R2 . 29c
n

n
n

n z
0 0

( ) ( ) ( )

The proof is completed by determining the sign of Hc from the
terms in Equation (29).

We obtain the sign of the sum over gn by inspecting sums of
pairs of terms, gn+gn+1 where n is even and the gn are given by
Equation (25) (since the series starts at n=0, this does not
leave any terms left over). The two terms in each pair have
opposite signs. Comparing the magnitudes,

ò

ò
=

+ +
+ +

f f

f f

+
+

+

g

g

n n

n n

B B B dr

B B B dr

2 4 2 1

2 5 2 2
. 30n

n

R
z

n

R
z

n

1 0
2 2 3

0
2 2 1

( )( )
( )( )

( )

( )
( )

Furthermore, if Bf and Bz each have a single sign and
" Îf B B r R1 0,z∣ ∣ [ ], then

ò òf
f

f
f

+ +

B
B

B
dr B

B

B
dr , 31

R

z

n R

z

n

0

2
2 3
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2
2 1⎛
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⎞
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⎛
⎝⎜

⎞
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where we have used

ò ò"   v x x u x v x dx u x dx0 1 ,
a

b

a

b
2 2( ) ( ) ( ) ( )

so

< "+ 
g

g
n1 0. 32n

n

1 ( )

It follows that the sign of the terms with even n determines the
sign of the sum over gn. If " Îf B r R0 0,[ ], then the even
terms are positive, which gives this sum the same sign as Hm. If

" Îf B r R0 0,[ ], then the even terms are negative, which
again gives this sum the same sign as Hm.

In fully neutralized cases, Bf(R)=0 hence terms in
Equation (29) apart from the sum over gn are exactly zero.
We have therefore proven that HmHc�0 if the FR is fully
neutralized in addition to the assumptions stated at the start of
this section.

To finish, we examine the effect of the terms in
Equation (29) involving ¹fB R 0( ) when the FR is partially
neutralized. Since we have oriented our coordinates so that
Bz>0, it follows that the term 2πRBf(R)Bz(R) has the same
sign as Bf(R), and it therefore has the same sign as Hm. The
sign of the sum over hn is obtained by the same approach as
used for the sign of the sum over gn. Inspecting Equation (26),

hn has the same sign as Bf(R) when n is even, and the opposite
sign when n is odd. Comparing the magnitudes of successive
terms, hn and +hn 1,

=
+
+

f+h

h

n

n

B R

B R

2 1

2 5
, 33n

n z

1
2⎛

⎝⎜
⎞
⎠⎟

( )
( )

( )
( )

( )

and using " Îf B B r R1 0,z∣ ∣ [ ], we get

< "+ h

h
n1 0. 34n

n

1 ( )

Thus, if we group the series into pairs + +h hn n 1 with n even
(so as to cover the whole series), the two terms have opposite
signs, but the even term has greater magnitude and therefore
every pair has the same sign as Bf. By extension, the full sum
over hn has the same sign as Bf(R), which is the same as the
sign of Hm. We have just shown that when the second and third
terms on the right-hand side of Equation (29) are non-zero, they
have the same sign as Hm. Thus, the proof holds for partially
neutralized FRs as well as fully neutralized ones.
We have now proven that HmHc�0 for a force-free

cylindrically symmetric FR under the assumptions of no
reversals in Bz or Bf, and f B Bz∣ ∣ ∣ ∣.

6. Discussion

How realistic are the assumptions used in the proof of
Section 5 for solar and interplanetary physics, what purpose did
they serve, and what would happen if they were relaxed?
Starting with the assumption that f B B 1z∣ ∣ , this holds

widely in solar and interplanetary physics. An important reason
is that solar FRs are typically much longer than their diameter,
and so a solar FR that did not have f B B 1z∣ ∣ would be kink-
unstable (Hood et al. 2009b). This condition is still typically
valid in magnetic clouds even if much flux is added around the
initial unstable FR during the eruption (e.g., Qiu et al. 2007). In
the proof of Section 5, f B B 1z∣ ∣ was used to obtain the series
form of Hc and to compare the magnitudes of consecutive
terms in the series. It is therefore a convenient assumption for
the proof, but more generally it is not a necessary condition
because, referring back to the example models of Section 3.1, a
fully neutralized case with f=2.2, n=1, and m=1 has

>fB B 1z∣ ∣ over a significant subinterval of [0, R], but this FR
nonetheless has Hm=0.3582 and Hc=1.065 to four
significant figures, which gives HmHc�0.
Now what about the assumption that neither Bz nor Bf has

reversals? Photospheric magnetograms frequently show mixing
of magnetic polarities, so one should be cautious about
modeling an entire active region as a single FR with axial
field in one direction. Nonetheless, such bipolar models are
sometimes used as convenient approximations of active regions
when focusing on the larger scales (e.g., Yeates et al. 2007;
Zuccarello et al. 2015). At finer scales, observations of coronal
loops and prominences motivate modeling substructures as FRs
with axial field in one direction. A reversal of the axial field is
also typically not present within magnetic clouds, or at least
occurs only near their boundary (e.g., Lepping & Wu 2010).
Thus, various applications in solar and interplanetary environ-
ments correspond to Bz(r) having one sign in a straightened FR
model. This is different to laboratory plasmas, where reversals
of axial field are not unusual and may be spontaneously
generated, e.g., the reversed field pinch (Taylor 1974).
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Reversals of Bf were excluded from the proof primarily
because of the counterexample of Section 4.2 and because,
with a few exceptions, most of the FR models used by solar and
interplanetary physicists do not have reversals of Bf. Note that
even with this restriction on Bf, there is considerable freedom
in the pattern of axial current, Jz, which can have multiple
layers of opposite sign separated by turning points of Bf. Our
proof therefore applies more generally than the examples and
arguments of Section 3, which were based on a simple direct-
return current pattern.

In the proof of Section 5, the assumed absence of magnetic
field reversals conveniently allowed us to compare consecutive
terms in the sum of integrals (see Equation (31)). It is not,
however, a necessary assumption for HmHc�0: exploring the
family of force-free FRs with

p
=

-
+

=f  B
r r

ar
r R

sin 3 2

2
, 0 1, 35

2

( ( )) ( )

more generally than the counterexample of Section 4.2 (which
had a=0), we find that the fully neutralized force-free case with
a=20 has Hm=−0.005186 and Hc=−0.04584 (4 sig.
fig.), giving HmHc�0, despite the field having a reversal of Bf.

While the proof assumed that the FR is exactly force-free
with ´ =J B 0, the conclusions are relevant to coronal and
heliospheric FRs. In the corona, force-free magnetic fields are
generally regarded as a good approximation, so it seems that
neither a finite thermal pressure with β=1 nor gravity would
be likely to change the sign of HmHc. In the heliosphere,
although the ambient β is of order unity, superposed epoch
analysis shows that β is typically around 0.2 at the center of
magnetic clouds (e.g., Rodriguez et al. 2016), so force-free
fields are a reasonable first approximation here as well.
Furthermore, in the heliospheric case β is larger at the
periphery of the FR than in its center, and β is even greater
in the external environment outside the FR. Thus, applying the
reasoning of Section 4.1 to a heliospheric FR with a direct-
return current structure, the effect of the thermal pressure is to
further increase Bz in the direct-current region compared to Bz

in the return-current region, reinforcing HmHc�0.
Finally, how important is the assumption of a straight,

cylindrically symmetric FR likely to be? Starting with our
model’s circular cross section, observed FRs can be asym-
metric about the central axis. For magnetic clouds, this is
especially true of the fast ones (e.g., Masías-Meza et al. 2016).
It is plausible that transforming a symmetric flux tube into an
asymmetric one by ideal motions will preserve the sign of
HmHc in many or perhaps even all cases, but we have not
explored that question here. We have also not yet determined
whether writhe provides sufficient freedom to obtain HmHc<0
in nonlinear force-free FRs without magnetic field reversals.
We therefore speculate that the result H H 0m c should hold
more widely than for the cylindrically symmetric FRs covered
by the proof in Section 5, but we advocate caution until these
issues can be clarified by future investigations.

7. Conclusions

This paper has examined whether or not magnetic fields
must have magnetic and current helicities of the same sign, i.e.,
is there a unique handedness for Hm and Hc?

In general, magnetic fields can have oppositely signed Hm

and Hc, making the handedness of such fields ambiguous, even

when Bf has a single sign. We found concrete examples of
HmHc<0 by considering a magnetostatic FR with high
pressure at its center (Section 4.1), and a nonlinear force-free
FR with reversals of Bf (Section 4.2).
Our main conclusion, though, is that HmHc�0 for a set of

FRs relevant to the photosphere, corona, and interplanetary
space. This is supported most rigorously by the mathematical
proof in Section 5 that cylindrically symmetric force-free FRs
have HmHc�0, assuming <fB B 1z∣ ∣ and no field reversals
(the assumptions are sufficient, but as shown by examples in
Section 6, not necessary for HmHc� 0). Complementing this
proof, Section 3 explored intuitive reasons why HmHc�0
holds in FRs with a direct-return current structure: the direct
current contributes to Hc with the same sign as Hm, whereas the
return current contributes with the opposite sign, and in realistic
photospheric/coronal/interplanetary conditions, stronger Bz in
the direct-current region weights the sum in favor of
HmHc�0. Similarly, if the return current does not fully cancel
the direct current, then the return current makes less of a
contribution to Hc, which also favors HmHc�0. These
arguments give confidence that HmHc�0 should not rely on
the circular cross section or the force-free condition J×B=0
assumed in the proof of Section 5, provided these more general
considerations are satisfied.
Finally, various avenues remain open for future work.

Perhaps the most notable of these is to establish whether or not
writhe can produce HmHc<0 for typical coronal/interplane-
tary conditions—the next step to justify continued use of the
HmHc�0 heuristic in these fields—and to extend our analysis
to FRs with non-circular cross section. We therefore hope to
see further work on the question “When do current and
magnetic helicities have the same sign?” in future years.
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Appendix
Proof of the Recursion Formula

Since we consider force-free fields, Equation (4) and (12)
combine to give

= - f
fr

dB

dr

B

B

d

dr
rB . 36z

z
( ) ( )

Using this to replace rdB drz in Equation (23), then integrating
by parts with Bf(0)=0,

ò
p

= +
-
+

f
f+ +

+f K
n

rB
d

dr

B

B
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4 1

2 1
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n R n
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n n
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Next, we use the product rule and chain rule to separate the
integral as
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which after another integration by parts becomes
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Using the product rule in the last integral,
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and collecting terms algebraically gives

ò

p
=

-
+ +

´ + +f

+

+
+

f
n n

rB
d

dr B
dr g h

4 1

2 1 2 3

1
43

n

n

R n

z
n n n

1

0
2 3

2 1

⎛
⎝⎜

⎞
⎠⎟

( )
( )( )

( )

where gn is defined in Equation (25) and hn=K1+K2 produces
Equation (26). Finally, differentiating in the first integral
yields
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and working through to the finish gives
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as required.
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