44 research outputs found

    Novel chimeric proteins mimicking SARS-CoV-2 spike epitopes with broad inhibitory activity

    Get PDF
    SARS-CoV-2 spike (S) protein mediates virus attachment to the cells and fusion between viral and cell membranes. Membrane fusion is driven by mutual interaction between the highly conserved heptad-repeat regions 1 and 2 (HR1 and HR2) of the S2 subunit of the spike. For this reason, these S2 regions are interesting therapeutic targets for COVID-19. Although HR1 and HR2 have been described as transiently exposed during the fusion process, no significant antibody responses against these S2 regions have been reported. Here we designed chimeric proteins that imitate highly stable HR1 helical trimers and strongly bind to HR2. The proteins have broad inhibitory activity against WT B.1 and BA.1 viruses. Sera from COVID-19 convalescent donors showed significant levels of reactive antibodies (IgG and IgA) against the HR1 mimetic proteins, whereas these antibody responses were absent in sera from uninfected donors. Moreover, both inhibitory activity and antigenicity of the proteins correlate positively with their structural stability but not with the number of amino acid changes in their HR1 sequences, indicating a conformational and conserved nature of the involved epitopes. Our results reveal previously undetected spike epitopes that may guide the design of new robust COVID-19 vaccines and therapies.This work was supported by grants CV20.26565 from the Consejería de Economía y Conocimiento, Junta de Andalucía (Spain), PID2019.107515RB.C21 from the Spanish State Research Agency (SRA/10.13039/501100011033), and co-funded by ERDF/ESF, “A way to make Europe”/“Investing in your future”. The work performed in C.M.'s laboratory was supported by grants from ANRS (Agence Nationale de Recherches sur le SIDA et les hépatites virales), the Investissements d'Avenir program managed by the ANR under reference ANR-10-LABX-77 and EHVA (No. 681032, Horizon 2020). Work in S.B.'s laboratory was supported by grants from the Agence Nationale de la Recherche (ANR) (ANR-11-LABX-0070_TRANSPLANTEX), the INSERM (UMR_S 1109), the Institut Universitaire de France (IUF), all the University of Strasbourg (IDEX UNISTRA), the European Regional Development Fund (European Union) INTERREG V program (project no. 3.2 TRIDIAG) and MSD-Avenir grant AUTOGEN. We are grateful to the Spanish Radiation Synchrotron Source (ALBA), Barcelona, Spain and the European Synchrotron Radiation Facility (ESRF), Grenoble, France, for the provision of time and staff assistance at XALOC (ALBA) and ID30B and ID23-2 (ESRF) beamlines during diffraction data collection. We thank María Carmen Salinas-García for her assistance in carrying out the crystallization screenings. We also thank Pilar González-García for helping us with the statistical analysis

    TLRs1-10 Protein Expression in Circulating Human White Blood Cells during Bacterial and COVID-19 Infections

    Get PDF
    Introduction: Toll-like receptors play crucial roles in the sepsis-induced systemic inflammatory response. Septic shock mortality correlates with overexpression of neutrophilic TLR2 and TLR9, while the role of TLR4 overexpression remains a debate. In addition, TLRs are involved in the pathogenesis of viral infections such as COVID-19, where the single-stranded RNA of SARS-CoV-2 is recognized by TLR7 and TLR8, and the spike protein activates TLR4. Methods: In this study, we conducted a comprehensive analysis of TLRs 1–10 expressions in white blood cells from 71 patients with bacterial and viral infections. Patients were divided into 4 groups based on disease type and severity (sepsis, septic shock, moderate, and severe COVID-19) and compared to 7 healthy volunteers. Results: We observed a significant reduction in the expression of TLR4 and its co-receptor CD14 in septic shock neutrophils compared to the control group (p < 0.001). Severe COVID-19 patients exhibited a significant increase in TLR3 and TLR7 levels in neutrophils compared to controls (p < 0.05). Septic shock patients also showed a similar increase in TLR7 in neutrophils along with elevated intermediate monocytes (CD14+CD16+) compared to the control group (p < 0.005 and p < 0.001, respectively). However, TLR expression remained unchanged in lymphocytes. Conclusion: This study provides further insights into the mechanisms of TLR activation in various infectious conditions. Additional analysis is needed to assess their correlation with patient outcome and to evaluate the impact of TLR-pathway modulation during septic shock and severe COVID-19

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Is there still a place for the Swan-Ganz catheter? Yes

    Get PDF
    International audienc

    Norepinephrine and Vasopressin in Hemorrhagic Shock: A Focus on Renal Hemodynamics

    No full text
    During hemorrhagic shock, blood loss causes a fall in blood pressure, decreases cardiac output, and, consequently, O2 transport. The current guidelines recommend the administration of vasopressors in addition to fluids to maintain arterial pressure when life-threatening hypotension occurs in order to prevent the risk of organ failure, especially acute kidney injury. However, different vasopressors exert variable effects on the kidney, depending on the nature and dose of the substance chosen as follows: Norepinephrine increases mean arterial pressure both via its α-1-mediated vasoconstriction leading to increased systemic vascular resistance and its β1-related increase in cardiac output. Vasopressin, through activation of V1-a receptors, induces vasoconstriction, thus increasing mean arterial pressure. In addition, these vasopressors have the following different effects on renal hemodynamics: Norepinephrine constricts both the afferent and efferent arterioles, whereas vasopressin exerts its vasoconstrictor properties mainly on the efferent arteriole. Therefore, this narrative review discusses the current knowledge of the renal hemodynamic effects of norepinephrine and vasopressin during hemorrhagic shock

    Early post-transplant serum IgA level is associated with IgA nephropathy recurrence after kidney transplantation

    No full text
    International audienceIgA nephropathy (IgAN), the most frequent primary glomerulonephritis, affects young patients and is associated with a high risk of progression to end-stage renal disease. Consequently, patients with IgAN constitute an important proportion of candidates for kidney transplantation. Several studies showed a significant risk of IgAN recurrence on kidney graft, but the risks factors for recurrence remain to be accurately evaluated. Indeed, early identification of at risk patients may allow the optimization of treatment and the reduction of recurrence rate on the graft. In the present work, we studied the relationship between post-transplant serum IgA (sIgA) levels and the risk of IgAN recurrence after kidney transplantation. Recipients with IgAN had higher levels of sIgA as compared to patients with other nephropathies (p&lt;0.05). The prevalence of IgAN recurrence was 20.8% during the period of analysis (mean follow-up of 6 ± 3.2 years). Serum IgA levels at M6, M12 and M24 post-transplant were significantly higher in patients with IgAN recurrence as compared to those without (p = 0.009, p = 0.035 and p = 0.029, respectively). Using receiver operating curve (ROC), sIgA at M6 and M12 post-transplant were significantly associated with IgAN recurrence (AUC = 0.771, p = 0.004 and AUC = 0.767, p = 0.016, respectively), while serum creatinine and proteinuria were not. Serum IgA level at month 6 was significantly associated with the occurrence of post-transplant IgA recurrence, whether it was analyzed as a continuous or a categorical variable. After successive adjustment on age, gender and proteinuria, sIgA remained a significant risk factor of post-transplant IgAN recurrence. Finally, survival free of IgAN recurrence was significantly better in patients with sIgA&lt;222 mg/dL at month 6 as compare to IgAN patients with sIgA≥222 mg/dL (p = 0.03). Thus, the present work supports a link between post-transplant sIgA levels and IgAN recurrence and suggests that sIgA may be a valuable predictive biomarker of IgAN recurrence in kidney transplant recipients.</p

    Disseminated intravascular coagulation is strongly associated with severe acute kidney injury in patients with septic shock

    No full text
    Abstract Background Disseminated intravascular coagulation (DIC) worsens the prognosis of septic shock and contributes to multiple organ failure. To date, no data linking DIC and acute kidney injury (AKI) occurrence, severity, and evolution in this setting are available. We aimed at analyzing the association between AKI occurrence, severity and evolution in patients with septic shock-induced DIC. In a prospective monocentric cohort study, consecutive patients, 18 years and older, admitted in the ICU of Strasbourg University Hospital in the setting of systemic hypotension requiring vasopressor related to an infection, without history of terminal chronic kidney disease were eligible. AKI was defined according to the KDIGO classification. DIC diagnosis was based on the International Society on Thrombosis and Haemostasis (ISTH) score. Evolution of AKI was evaluated through the composite endpoint of major adverse kidney events. Only patients with DIC that occurred before or at the time of AKI diagnosis were considered. Univariate and multivariate analysis were performed to determine factors associated with renal outcomes. Results 350 patients were included, of whom 129 experienced DIC. Patients with DIC were more seriously ill (median SAPS II 64 vs. 56, p < 0.001), and had higher 28-day mortality (43.3% vs. 26.2%, p < 0.001). AKI was more frequent in patients with DIC (86.8% vs. 74.2%, p < 0.005), particularly for the more severe stage of AKI [KDIGO 3 in 58.1% of patients with DIC vs. 30.8% of patients without DIC, p < 0.001, AKI requiring renal replacement therapy (RRT) in 47.3% of patients with DIC vs. 21.3% of patients without DIC, p < 0.001]. After adjustment for confounding factors, DIC occurrence remained associated with the risk of having the more severe stage of AKI with an odds ratio (OR) of 2.74 [IC 95% (1.53–4.91), p < 0.001], and with the risk of requiring RRT during the ICU stay [OR 2.82 (1.53–5.2), p < 0.001]. Conclusion DIC appears to be strongly associated with the risk of developing the more severe form of AKI (stage 3 of the KDIGO classification, RRT requirement), even after adjustment for severity and other relevant factors
    corecore