42 research outputs found

    Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport

    Get PDF
    Linear-nonequilibrium thermodynamics (LNET) has been used to express the entropy generation and dissipation functions representing the true forces and flows for heat and mass transport in a multicomponent fluid. These forces and flows are introduced into the phenomenological equations to formulate the coupling phenomenon between heat and mass flows. The degree of the coupling is also discussed. In the literature such coupling has been formulated incompletely and sometimes in a confusing manner. The reason for this is the lack of a proper combination of LNET theory with the phenomenological theory. The LNET theory involves identifying the conjugated flows and forces that are related to each other with the phenomenological coefficients that obey the Onsager relations. In doing so, the theory utilizes the dissipation function or the entropy generation equation derived from the Gibbs relation. This derivation assumes that local thermodynamic equilibrium holds for processes not far away from the equilibrium. With this assumption we have used the phenomenological equations relating the conjugated flows and forces defined by the dissipation function of the irreversible transport and rate process. We have expressed the phenomenological equations with the resistance coefficients that are capable of reflecting the extent of the interactions between heat and mass flows. We call this the dissipation-phenomenological equation (DPE) approach, which leads to correct expression for coupled processes, and for the second law analysis

    Thermodynamically Coupled Transport in Simple Catalytic Reactions

    Full text link

    Nonequilibrium Thermodynamics. Transport and Rate Processes in Physical, Chemical and Biological Systems. 4th Edition

    Get PDF
    Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, Fourth Edition emphasizes the unifying role of thermodynamics in analyzing natural phenomena. This updated edition expands on the third edition by focusing on the general balance equations for coupled processes of physical, chemical and biological systems. Updates include stochastic approaches, self-organization criticality, ecosystems, mesoscopic thermodynamics, constructual law, quantum thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems. The book also emphasizes nonequilibrium thermodynamics tools, such as fluctuation theories, mesoscopic thermodynamic analysis, information theories, and quantum thermodynamics in describing and designing small scale systems

    Use of natural ores as oxygen carriers in chemical looping combustion: A review

    Get PDF
    Chemical looping combustion (CLC) has gained considerable ground in energy production due to its inherent carbon capture with a minimal energy penalty. The choice of metal oxide used as an oxygen carrier (OC) in CLC has a substantial weight on the overall efficiency of energy production as well as the ultimate cost per MW. While much work has gone into manufacturing synthetic OCs with high fuel conversions, harsh operating conditions and process limitations cause some unavoidable loss of the oxygen carrier. With low production costs and minimal conditioning required, natural ores have grown in interest as cheap alternative oxygen carriers. This work provides a substantial literature review of recent works studying the use of natural ores in CLC. Iron-based, manganese-based, copper-based and calcium based ores were found to be the main ores researched, along with mixtures of these ores and natural ores with minor additional compounds. Typical parameters have been collected for each study including; fuel conversion, stability, physical characteristics, and carbon capture efficiency. Natural ores are compared with purified metal oxides to highlight strengths and weaknesses of each ore and recommendations for future studies are made

    Excess Heat Capacity Surfaces for Water-Alkanol Mixtures by the UNIQUAC Model

    Full text link

    Comparative kinetic modeling of growth and molecular hydrogen overproduction by engineered strains of \u3ci\u3eThermotoga maritima \u3c/i\u3e

    Get PDF
    Thermotoga maritima is an anaerobic hyperthermophilic bacterium known for its high amounts of hydrogen (H2) production. In the current study, the kinetic modeling was applied on the engineered strains of T. maritima that surpassed the natural H2 production limit. The study generated a kinetic model explaining H2 overproduction and predicted a continuous fermentation system. A Leudking-Piret equation-based model predicted that H2 production by Tma200 (0.217 mol-H2 g–1-biomass) and Tma100 (0.147 mol-H2 g–1-biomass) were higher than wild type (0.096 mol-H2 g–1 -biomass) with reduced rates of maltose utilization. Sensitivity analysis confirmed satisfactory fitting of the experimental data. The slow growth rates of Tma200 (0.550 h–1) and Tma100 (0.495 h–1) are compared with the wild type (0.663 h–1). A higher maintenance energy along with growth and non-growth H2 coefficients corroborate the higher H2 productivity of the engineered strains. The modeled data established a continuous fermentation system for the sustainable H2 production. (Inludes 2 supplemental figures

    Comparative kinetic modeling of growth and molecular hydrogen overproduction by engineered strains of \u3ci\u3eThermotoga maritima \u3c/i\u3e

    Get PDF
    Thermotoga maritima is an anaerobic hyperthermophilic bacterium known for its high amounts of hydrogen (H2) production. In the current study, the kinetic modeling was applied on the engineered strains of T. maritima that surpassed the natural H2 production limit. The study generated a kinetic model explaining H2 overproduction and predicted a continuous fermentation system. A Leudking-Piret equation-based model predicted that H2 production by Tma200 (0.217 mol-H2 g–1-biomass) and Tma100 (0.147 mol-H2 g–1-biomass) were higher than wild type (0.096 mol-H2 g–1 -biomass) with reduced rates of maltose utilization. Sensitivity analysis confirmed satisfactory fitting of the experimental data. The slow growth rates of Tma200 (0.550 h–1) and Tma100 (0.495 h–1) are compared with the wild type (0.663 h–1). A higher maintenance energy along with growth and non-growth H2 coefficients corroborate the higher H2 productivity of the engineered strains. The modeled data established a continuous fermentation system for the sustainable H2 production. (Inludes 2 supplemental figures

    Integration of biology, ecology and engineering for sustainable algal‑based biofuel and bioproduct biorefinery

    Get PDF
    Despite years of concerted research efforts, an industrial-scale technology has yet to emerge for production and conversion of algal biomass into biofuels and bioproducts. The objective of this review is to explore the ways of possible integration of biology, ecology and engineering for sustainable large algal cultivation and biofuel production systems. Beside the costs of nutrients, such as nitrogen and phosphorous, and fresh water, upstream technologies which are not ready for commercialization both impede economic feasibility and conflict with the ecological benefits in the sector. Focusing mainly on the engineering side of chemical conversion of algae to biodiesel has also become obstacle. However, to reduce the costs, one potential strategy has been progressing steadily to synergistically link algal aquaculture to the governmentally mandated reduction of nitrogen and phosphorous concentrations in municipal wastewater. Recent research also supports the suppositions of scalability and cost reduction. Noticeably, less is known of the economic impact of conversion of the whole algae-based biorefinery sector with additional biochemical and thermochemical processes and integration with ecological constraints. This review finds that a biorefinery approach with integrated biology, ecology, and engineering could lead to a feasible algal-based technology for variety of biofuels and bioproducts

    Volume CXIV, Number 4, November 7, 1996

    Get PDF
    Objective: Turner syndrome (TS) is a chromosomal disorder caused by complete or partial X chromosome monosomy that manifests various clinical features depending on the karyotype and on the genetic background of affected girls. This study aimed to systematically investigate the key clinical features of TS in relationship to karyotype in a large pediatric Turkish patient population.Methods: Our retrospective study included 842 karyotype-proven TS patients aged 0-18 years who were evaluated in 35 different centers in Turkey in the years 2013-2014.Results: The most common karyotype was 45,X (50.7%), followed by 45,X/46,XX (10.8%), 46,X,i(Xq) (10.1%) and 45,X/46,X,i(Xq) (9.5%). Mean age at diagnosis was 10.2±4.4 years. The most common presenting complaints were short stature and delayed puberty. Among patients diagnosed before age one year, the ratio of karyotype 45,X was significantly higher than that of other karyotype groups. Cardiac defects (bicuspid aortic valve, coarctation of the aorta and aortic stenosis) were the most common congenital anomalies, occurring in 25% of the TS cases. This was followed by urinary system anomalies (horseshoe kidney, double collector duct system and renal rotation) detected in 16.3%. Hashimoto's thyroiditis was found in 11.1% of patients, gastrointestinal abnormalities in 8.9%, ear nose and throat problems in 22.6%, dermatologic problems in 21.8% and osteoporosis in 15.3%. Learning difficulties and/or psychosocial problems were encountered in 39.1%. Insulin resistance and impaired fasting glucose were detected in 3.4% and 2.2%, respectively. Dyslipidemia prevalence was 11.4%.Conclusion: This comprehensive study systematically evaluated the largest group of karyotype-proven TS girls to date. The karyotype distribution, congenital anomaly and comorbidity profile closely parallel that from other countries and support the need for close medical surveillance of these complex patients throughout their lifespa

    Excess Heat Capacity Surfaces for Water-Alkanol Mixtures by the UNIQUAC Model

    Get PDF
    Hydroorganic mixtures are industrial solvents that can serve as media to solubilize either water in hydrocarbon or a hydrophobic substance in water. In many cases the solubilizing capability is obtained via a homogeneous complex aqueous mixtures containing an alcohol. Since excess heat capacity CPE, is very sensitive to structural changes in mixtures, concentration and temperature dependence of CPE have been calculated by using the UNIQUAC model for the mixtures methanol(l)-water(%, ethanol(l)-water(2), and l-propanol(l)-water(2). The temperature-dependent parameters of the model estimated directly from CPE data at more than one different isotherm are used in the calculations. The overall deviations between the calculated and experimental data points change in the range 6.52-10.15%, which indicates the satisfactory representation of CPE data by the model for engineering calculations. The temperature range of experimental data for the mixtures is 288.15and 308.15K. Surfaces of reduced, apparent and partial molar excess heat capacities are also derived. The concentration and temperature dependencies of these functions suggest the existence of transitions of microstructure in the water-rich region, qualitatively similar to micellization. The surface of these thermodynamic functions facilitates a better understanding of thermodynamic properties and association of alcohol-water mixtures over a whole or certain concentration and temperature range. Such thermodynamic surfaces may be represented satisfactorily by the UNIQUAC model at low pressures
    corecore