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Abstract

Chemical looping combustion (CLC) has gained considerable ground in energy production
due to its inherent carbon capture with a minimal energy penalty. The choice of metal
oxide used as an oxygen carrier (OC) in CLC has a substantial weight on the overall effi-
ciency of energy production as well as the ultimate cost per MW. While much work has
gone into manufacturing synthetic OCs with high fuel conversions, harsh operating con-
ditions and process limitations cause some unavoidable loss of the oxygen carrier. With
low production costs and minimal conditioning required, natural ores have grown in in-
terest as cheap alternative oxygen carriers. This work provides a substantial literature
review of recent works studying the use of natural ores in CLC. Iron-based, manganese-
based, copper-based and calcium based ores were found to be the main ores researched,
along with mixtures of these ores and natural ores with minor additional compounds.
Typical parameters have been collected for each study including; fuel conversion, sta-
bility, physical characteristics, and carbon capture efficiency. Natural ores are compared
with purified metal oxides to highlight strengths and weaknesses of each ore and rec-
ommendations for future studies are made.

Keywords: Chemical looping combustion, Sustainable energy, Carbon capture, Natu-
ral ore, Oxygen carrier

1. Introduction

Chemical looping combustion (CLC) is one method of electricity genera-
tion being developed to address the concerns of growing levels of atmo-
spheric CO,. CLC is a unique form of fuel combustion that can use most
fuels (renewable or fossil based) and exhibits inherent CO, capture. CLC
utilizes the redox cycle of a metal oxide to split the combustion reaction
into two distinct processes; fuel combustion and metal oxide reformation.
Oxygen required for the combustion of fuel is supplied by a metal oxide
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oxygen carrier (OC) rather than air, preventing the dilution of the flue gas
with atmospheric N_. Hence the off gas from combustion contains primar-
ily CO, and water vapor which, after condensation, can produce a nearly
pure CO, stream for sequestration. The second step of the cycle reforms
the metal oxide by reaction with air.

The center of this process is the metal oxide itself. Important consider-
ations are required in the choice of oxygen carrier in CLC including fuel
conversion potential, recyclability through multiple redox cycles, mechan-
ical strength, fluidization properties, environmental impact, and also im-
portantly cost. There has been much research into the methods of OC tech-
nology to provide improved reaction and mechanical properties. However
many of these methods increase production costs for the OC and therefore
decrease the economic feasibility of such systems (Porrazzo et al., 2016;
Abad et al., 2007). The use of raw metal ores has been investigated by nu-
merous groups as a method of providing a readily available and cheap ox-
ygen carrier for the chemical looping process (Demirel et al., 2015; Wang
et al., 2015a; Adanez et al., 2012; Imtiaz et al., 2013). The objective of this
paper is to compile the latest work involving the use of natural ores as OCs
in CLC processes. We provide an updated literature review of iron, cop-
per, manganese and calcium based ores that have been studied for their
use in CLC. A comparison of the results found for these different ores is
conducted and compared to conventional (purified) metal oxide OCs. This
work may provide a better understanding of ore use in CLC, clarify cur-
rent research demands and help distinguish the benefits of certain ores
in comparison with purified metal oxides.

2. Background
2.1. Chemical looping combustion

Chemical looping combustion is a novel method of energy production that
modifies conventional fuel combustion to inherently include carbon cap-
ture. This modification comes from the utilization of a metal oxide (MeO)
as the source of oxygen in the combustion reaction. The use of this metal
oxide oxygen carrier effectively splits the combustion reaction into two
major steps and couples it to the reduction-oxidation cycles shown in Re-
actions (1) and (2), respectively.
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(2n+m)MeyOX + CnHszl(2n+m)MeyOX_1 + mH, O+ nCO, (1)
(211+m)MeyOX_1 + (n+%2m)0, D(2n+rr1)MeyOX (2)
CH, + (n+¥2m)O,mH,O + nCO, (3)

Reaction (1) is usually an endothermic reaction (AH, > 0); however, it can
be either exothermic or endothermic depending on the choice of metal
oxide and fuel used. Reaction (2) is highly exothermic (AH, <<0). The
net reaction of an entire cycle is simply a conventional combustion reac-
tion (Reaction (3)) and is highly exothermic (AH, +AH, < 0). Fig. 1 shows
a schematic for use of chemical looping technology in electricity produc-
tion. Most CLC processes utilize fluidized bed technologies to mix the OC
and the fuel. Fixed bed reactors with periodically changing feed streams
as seen in Fig. 1b are also considered. These reactors contain the mixed
OCs with fuel (Noorman et al., 2007). For solid fuels atmospheric opera-
tion is common, although some CLC units have been operated under pres-
surized conditions (Xiao et al., 2012). The flue gas from the fuel combus-
tion in fuel reactor contains primarily CO, and H,O without nitrogen. A
gas cleaner can be used, as gases exiting the fuel reactor can include un-
burnt compounds (CH,, CO, H,) from incomplete combustion of the fuels.

Gaseous fuel is easier to work with in CLC because it produces very lit-
tle char, no ash and does not require solid-solid separations. However the
large supply of coal dictates that investigation into CLC with solid fuels
is also important. Indeed, the use of solid fuels has extended during the
last years, and an extensive work has been done in the use of solid fuels
(Demirel et al., 2015; Wang et al., 2015a; Adanez et al., 2012). When using
gaseous fuels, the fuel can be fed directly to the fuel reactor as the fluidi-
zation agent. However with solid fuels three schemes are applied; ex-situ
gasification (eG-CLC), in-situ gasification (iG-CLC), and chemical loop-
ing with oxygen uncoupling (CLOU). eGCLC involves the gasification of
the solid fuel outside of the loop. The resultant gasification products are
fed to the FR and combusted. iG-CLC involves a direct feed and gasifica-
tion of the solid fuel in the fuel reactor and fluidization through the ad-
dition of steam, CO, or a mixture of these gases. CLOU uses unique OCs
that readily release gaseous oxygen and rather than gasifying with addi-
tional CO, or steam, gasification takes place in the FR using this released
O, (Adanez et al., 2012; Imtiaz et al., 2013; Mattisson et al., 2014; Cormos,
2017). While each of these processes has strengths and weaknesses the



MATZEN ET AL. IN INTL J. GREENHOUSE GAS CONTROL 65 (2017) 4

real task in the CLC process is carried out by the oxygen carrier itself. Fuel
conversion, reoxidation ability, kinetics, thermodynamic limitations, char
conversion etc. all depend of the choice of the metal oxide used as an ox-
ygen carrier in the process.

2.2. Oxygen carriers

Ryden et al. (2010) presents some characteristics of good oxygen carri-
ers as follows; OCs must have a high reactivity towards fuels (solid, CH,
or syngas), be thermodynamically capable of converting fuels to CO, and
H,O, have a high oxygen transport capacity, have positive physical charac-
teristics (low attrition/fragmentation, low agglomeration), be thermally
stable, prevent carbon formation in the fuel reactor, be environmentally
sound and be cost effective. In order to meet these characteristics, many
metal oxides have been tested (Adanez et al., 2012). Most OCs consist of
metal oxides such as CuO, Fe O, NiO, Mn_O, or CoO. However, the MeOs
in their pure state normally have poor stability and mechanical proper-
ties. Therefore they are typically bound to inert supports such as ALO,,
MgALO,, Si0O,, TiO,, ZrO, or stabilized ZrO,, which improve the physical
characteristics of the pure metal oxide. Additional modifications can also
be made to oxygen carriers to further increase its ability to perform in
the CLC process. These include spray-drying or impregnating OCs with
additional compounds or metal oxides that can benefit the OC (Mattisson
et al., 2014). A variety of methods of synthesis including sol-gel, mechan-
ical mixing and combustion synthesis have been explored to further im-
prove the lives and properties of artificial oxygen carriers. However, with
each additional step and modification the cost of producing the metal ox-
ide may increase. With inevitable losses due to attrition, fragmentation,
deactivation and OC/ash separation losses the cost of the metal oxide re-
placement can be a contributing factor to the overall economic feasibil-
ity of a CLC process (Porrazzo et al., 2016). It is obvious that a balance
between processing cost and make-up cost must be achieved to yield an
economically viable CLC OC. It is for this reason that many researchers
have begun exploring cheap alternative OCs. Raw metal ores are a natu-
ral choice for this alternative OC. While likely not as stable (and requiring
higher make-up costs) natural ores present a cheap alternative to synthetic
OCs requiring little processing cost. Natural ores contain metal oxides and
most are inherently bound to materials like AL O, TiO, and ZrO, much like
supported synthetic OCs. This allows them to operate in CLC processes
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with the added physical toughness of supported materials without costly
manipulations. The pretreatment of natural ores used as OCs consists of
only crushing, sieving and calcination. Some ores contain trace amounts
of compounds that have shown catalytic effects in char gasification, wa-
ter gas shift promotion and gas conversions.

As a member of oxygen carriers family, natural ores attract more and
more attention in the CLC systems due to its vast resources and cheap
price compared with the conventional oxygen carries. Basically, oxygen
carriers must have some crucial characteristics such as high fuel conver-
sion to CO,and H,0 in CLC, resistance to attrition, high or acceptable ox-
ygen transport capacity and so on. As an oxygen carrier, the ability of
transporting oxygen is the most considerable. Oxygen transport capacity
is the factor that describes an oxygen carrier’s ability of carrying the ox-
ygen in a CLC process.

Oxygen transport capacity (R 2) can be defined by Adanez et al. (2012)

Ry, = WyR, (4)

where, w,.is the fraction of active material for oxygen carrier and R is
called the oxygen transport capability which is defined as

R, = (m,-m)/m, (5)

where m and m_are the mass of fully oxidized and reduced OC, respec-
tively. The value of R, depends on the final oxidation state after reduction.

In general, the oxygen transport capacity of natural ores is not higher
than that of conventional oxygen carriers. The reason is that there are con-
siderable amounts of impurities in the natural ores. However, consider-
ing the pre-treatment of conventional oxygen carriers and the cost, natu-
ral ores are still highly competitive. On the other hand, most natural ores
contain more than one active compound. In that case, the oxygen trans-
port capacity can be achieved by simply adding the R , of each active com-
pound in the mixed natural ores.

Below we present the results of a comprehensive literature search into
the use of natural ores in chemical looping combustion processes. We
present results from numerous studies showing the ability for ilmenite,
iron ores (hematite, wustite, etc.), manganese ores, copper ores and cal-
cium ores to perform in CLC operations. We also discuss the use of mixed
ore systems and the addition of minor compounds to ores for further en-
hanced performance.
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3. Natural ores as oxygen carriers

Natural ores contain valuable elements especially including metals. Abun-
dant ore resources makes them easily attained at a minor cost. With the
considerable content of metal oxides and the acceptable price, natural ores
can be competitive when compared with traditional oxygen carriers. Ta-
ble 1 gives some natural ores with active components listed. The active
components of an ore vary based on mining site and ore quality. Based
on the active metal components, natural ores can be divided by different
species. Iron-based, manganese-based, copper-based, calcium-based and
mixed ores are the most commonly studied examples for oxygen carriers.

3.1. Iron-based ores

3.1.1. Ilmenite

[Imenite is a naturally occurring important ore of titanium, with an ide-
alized composition of FeTiO,. On an oxygen carrier basis it can be com-
parable to an iron oxide fixed to a titanium support. Its most commercial
use is in the production of titanium and titanium oxides. Ilmenite is one
of the most studied and used minerals as an OC. Its support can be linked
to its low cost, $165/ton (2014) and high crush strength (Azis et al., 2010;
Liu et al., 2013; Leion et al., 2009a; Bedinger, 2015). Ilmenite is nontoxic,
radioactive or hazardous and its only environmental impact would come
from its mining operation (Moldenhauer et al., 2012). It is mined in two
forms, mineral sands and hard rock and is found nearly everywhere in the
world with most production coming from Australia, South Africa, China
and Canada (Bedinger, 2015). Minor modifications are required to natu-
ral ilmenite ore before use as an OC. Besides crushing, ilmenite must be
calcined before use which brings it to its fully oxidized state. Most proce-
dures include a prolonged heating of the ore (900-1200 °C) in air. This
has also been shown to reduce sulfur emissions from the ilmenite in CLC
operation (Schwebel et al., 2012). However even in its raw state ilmen-
ite can be used as an oxygen carrier (Azis et al., 2010; Leion et al., 2009a;
Adanez et al., 2010).

In terms of stability, ilmenite performs rather well. Interestingly even
after calcination, it shows an increased activation after multiple redox
cycles in many studies. This improved activation typically stabilizes af-
ter several cycles and reaches a maximum value (Cuadrat et al., 2012a).
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This activation is associated with an increased porosity of the particles
over multiple cycles (Schwebel et al., 2012; Adanez et al., 2010; Cuad-
rat et al., 2012a, 2011a). While this porosity does improve fuel conver-
sions it could lead to a diminished particle strength, eventually causing
attrition. However this effect has yet to be fully studied (Leion et al.,
2009a). There has been some concern of a decreased oxygen transport
capacity (R,,) with multiple cycles (Adanez et al., 2010; Cuadrat et al.,
20124, 2011c). This has been attributed to a segregation of the Fe from
the TiO, and a shell of iron being formed along the perimeter of the par-
ticles. R, values have shown to decrease from 4 to 2.4 after 100 cycles.
Even with this decrease, the values of oxygen that can be transferred to
the fuel reactor are still high enough to provide sufficient fuel conver-
sions (Cuadrat et al., 2012a).

Ilmenite shows a higher activity for H, conversion than CO conver-
sion but typical syngas conversions are between 9o and 99%. Results
show that higher amounts of iron in the mineral may cause improved CO
conversions (Azis et al., 2010). Rock based minerals are found to exhibit
higher fuel conversions when compared to sand based ilmenite. Rock
ilmenite was also found to be more stable and exhibit less agglomera-
tion (Cuadrat et al., 2011c). CH . conversions of ilmenite are low for most
studies (Leion et al., 2009a; Proll et al., 2009). The conversion of solid
fuels varied from study to study and largely depended on experimental
reactor setups and operating conditions. The limiting factor in most solid
fuel operations is conversion that can be improved at suitable operating
conditions or highly reactive fuels (Cuadrat et al., 2012b). In other cases,
high fuel conversion values can be achieved by using a carbon stripper in
the CLC unit (Markstrom et al., 2014). After the conversion from solids
to gas, ilmenite performs very similarly to combustion using previously
prepared syngas (Bidwe et al., 2011). Higher conversions were observed
for higher temperatures in many studies, leading to reduced oxygen de-
mands and increased carbon capture efficiencies (CCE) (Cuadrat et al.,
2011c¢; Bidwe et al., 2011; Berguerand and Lyngfelt, 2009). This was at-
tributed to increased gasification rates and higher char conversions at
increased temperatures (Cuadrat et al., 2011a; Berguerand and Lyngfelt,
2009). Numerous studies have been found detailing the use of ilmenite
as an oxygen carrier in CLC operations. These studies present a variety
of reactors, operating conditions, fuels and ores. A collection of results
from these works can be found in Table 2.
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3.1.2. Hematite and other iron ores

The majority of iron ore comes from different mines in China, Austra-
lia and Brazil and is typically used in steel making. Current costs for iron
ore vary based on location but a typical value is around $92.78/ ton. Dif-
ferent mines produce ore with different compositions and impurities but
iron ore is mainly composed of the iron oxides, Fe O, and Fe O,. Major im-
purities are SiO,, Al,O,and dolomite. These impurities are largely respon-
sible for the improved mechanical properties when compared to pure iron
oxides and ilmenite (Song et al., 2012; Jerndal et al., 2011). Much like il-
menite, iron ore typically performs better when calcined at high temper-
atures before use. The temperature of calcination was cited to be of high
importance in Song et al. (2012), however many different calcination tem-
peratures (900-1000 °C) have shown comparable results.

Before discussing different studies it is important to clarify that due to
the inherent differences in individual iron ores, results vary between stud-
ies. Even so, general inferences can be made about the feasibility of using
iron ores as OCs in CLC. The reaction stability of iron ores is slightly less
than that of ilmenite. Some samples show similar increases in reactivity
with redox cycles which was again attributed to porosity increases in the
OC (Gu et al., 2011; Xiao et al., 2010a). However decreases in porosity and
surface area were also observed for other ores (Karlsson, 2014; Pans et al.,
2015). Agglomeration was not found to be an issue for any of the studies
found however attrition of the ore was observed in many works. Although,
the iron ore particles maintained their particle size without agglomera-
tion, the particles become more porous due to thermal stress and repeated
oxidation/reduction cycles (Gu et al., 2011). Attrition rates of 0.05-0.12
wt%/h were observed (Song et al., 2012, 2013; Pans et al., 2015). How-
ever these low rates are not substantial due to the low cost of iron ore.

Iron ore typically has low oxygen transport capacity and thermody-
namic constraints (Gu et al., 2011). In general though the combustion ef-
ficiency of iron ores is rather high, even when using solid fuels. Like il-
menite, increasing the temperatures of the fuel reactor helps to improve
carbon capture efficiency and conversion. An added benefit of the SiO,im-
purities in iron ore is the inhibition of sintering at higher temperatures.
This allows operations at >900 °C without much observed sintering (Song
et al., 2012; Gu et al., 2011). An increased operational pressure was also
found to beneficially effect the conversion rates of solid fuels (Xiao et al.,
2012, 2010a). One major issue in using iron ore is its low reactivity for
combusting CH,. A highly reactive iron ore is suitable to burn syngas, but
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not methane (Pans et al., 2015). Therefore any CH, present from the sol-
ids volatilization and gasification or the natural gas would cause fuel con-
version issues. Results on the general use of iron ores as OC from litera-
ture can be found in Table 3.

3.2. Manganese-based ores

Manganese oxides are considered relatively safe, with respect to handling
and the environment compared to nickel and cobalt. They are also consid-
ered a cheap and abundant class of materials, and has a greater oxygen
carrying capacity than iron redox systems. Typical manganese ores con-
tain about 30-60% manganese in oxide form, Mn_O,. The major impu-
rities of Mn ore are iron, alumina and silica but these vary greatly from
mine to mine. These impurities could play a large role in the properties
of the OC due to their ability to combine and form additional OC mate-
rials (Sundqvist et al., 2015). The majority of manganese ore is mined
in China, South Africa, Australia, Gabon and Brazil. Most U.S. consump-
tion of manganese (80-90%) is in the production of steel however it is
also used in solid state batteries. Current market prices for metallurgical-
grade ore (46-48% manganese) are around $4.61/mt, making it a very
cheap alternative OC (Corathers, 2016). The ore can be used in its natu-
ral state or calcined before use, the effect this has on OC performance has
not been addressed.

Manganese ores show great conversion of syngas with most conversion
being 95-100% (Leion et al., 2009a; Sundqvist et al., 2015; Arjmand et
al., 2014). It was found that higher potassium impurities led to a dimin-
ished gas conversions, however this was not distinctly proven (Arjmand
etal., 2014). Mn OCs typically show low conversions of CH,. However Mn
ore shows mixed conversions of CH, likely due to impurity differences,
with max conversions approaching 80% (Sundqvist et al., 2015). While
this value is still not complete combustion, additional conversions could
be achieved by optimizing reactor temperatures or by increasing OC load-
ing (Moldenhauer et al., 2012). Fuel conversions of solid fuels were also
very high for all studies. This has been attributed to two distinct mech-
anisms; O, released from the Mn O, at high temperatures and catalysis
of char conversion by ore impurities. Pure manganese oxygen carriers
have shown the ability to perform in chemical looping oxygen uncou-
pling (CLOU) schemes in which fuel combustion occurs as a result of the
release of gaseous oxygen from the OC. Mn ore was shown to have some
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CLOU properties, however to a lower extent than synthetic OC (Sundqvist
et al., 2015). However sustained CLOU capability of Mn ore is debatable.
CLOU capability is lost after the first reduction because MnO is not able to
be re-oxidized to Mn,O,, but only to Mn O, (Zafar et al., 2007; Mei et al.,
2016). Arjamand et al. (2014) concluded that the presence of alkali parti-
cles in the ore catalytically improve the conversion of char by causing cav-
ities and channels in the fuel. Both of these effects lead to improved gas-
ification rates, up to 4 times as fast as ilmenite (Linderholm et al., 2013).
However this catalytic effect may not be sustainable as the alkali can be
lost after multiple redox cycles (Mei et al., 2016).

Most of the manganese ore studied showed relatively stable conversion
performance. Some deactivation was noted however this stabilized after
10 cycles (Mei et al., 2015). This could be the result of natural MnO, and
Mn, O, being converted to Mn_O, due to thermodynamic limitations at oxi-
dation conditions. Minor sintering could also be the cause for this decrease
(Sundgqyvist et al., 2015). Physical deterioration to the manganese ore is the
main stability concern for its use as an oxygen carrier. Attrition of the OC
was noted to be a large concern in most studies with the production of
fines. Mei et al. (2015) noted that micropores present in the original ore
were expanded into macropores, leading to a decreased crush strength.
The production of fines caused by this decreased structural strength makes
the use of Mn ore as an oxygen carrier less feasible. However, some Mn
ores have been identified with low attrition rates, which would be benefi-
cial in order to reduce the amount of fines produced (Schmitz et al., 2016).
Even still, the low cost of the ore means that even the high loss rates ob-
served may not hinder the economic performance of this process. A col-
lection of results from literature can be found in Table 4.

3.3. Copper-based ores

Copper-based OCs are promising in CLC based processes as they exhibit
high reaction rates and oxygen transfer capacity, with no thermodynamic
limitations. Purified CuO shows promise as an OC in CLOU operations as
well, as it readily releases gaseous oxygen at fuel reactor operating condi-
tions. This ultimately leads to higher solid fuel conversion and better fuel
efficiencies. Many of the studies found using copper ore were to inves-
tigate their use in CLOU applications. The majority of copper ore comes
from Chile, China, Peru and the United States. Ore concentrates are a typ-
ical product of mines. These concentrates have increased copper concen-
trations and are produced by sulfuration and flotation. Because of this
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process the natural copper and iron present in the ore are converted to
CuS and CuFeS. A calcination process is done in most cases to reconvert
the metals into an oxidized form, typically CuO and CuFe O, (Zhao et al.,
2014). Most of the studies found used the same copper ore concentrate
with a copper concentration (after calcination) of 21% CuO and 70% Cu-
FeO,, with the remainder being SiO,, CaSO A and AL,O . The effect of this
concentration process is notable as the oxygen capacity of the ore is greatly
increased. Unfortunately there exists a major lack of data from the use of
other copper ores in CLC processes. The price of copper ore is likely the
reason for this, the price of ore depends greatly on the fluctuating copper
metal price but a value of $1.60/kg is reasonable, making this the most
expensive ore studied (Tian et al., 2015).

The higher CuO content ores typically performed better in terms of fuel
conversions. These ores have very high O, transport capacities (Tian et al.,
2015; Yang et al., 2015) as is common with CuO oxygen carriers. Zhao et al.
(2015) showed that with the high CuO concentrates mentioned above reach
combustion levels>95% can be achieved. Carbon capture efficiencies>80%
were also found using this same concentrate in a gasification scheme to pro-
duce syngas (Guo et al., 2015). However, with lower Cu content ores, lower
combustion efficiencies were found (Tian et al., 2013). Copper ores do have
the potential for use in CLOU processes though. Wen et al. (2012) found that
in a CO, atmosphere 3 distinct ores could produce O, efficiently, showing
that even lower Cu content ores can be used in CLOU.

Purified CuO shows good stability as an oxygen carrier however due to
its relatively low melting point agglomeration and sintering is a concern at
high temperatures. This phenomena was observed in many studies found
however only minimal agglomeration was noted (Zhao et al., 2014, 2015;
Tian et al., 2015). It was also found that agglomeration could be avoided
by using low CuO content ores but this would also lead to higher required
OC loadings (Wen et al., 2012). Conversion stability is also somewhat of
concern using copper ores. The sintering of the ore leads to decreased con-
versions but it was also observed that a decrease in conversions did sta-
bilize after multiple cycles. A collection of results from numerous publi-
cations can be found in Table 5.

3.4. Natural gypsum oxygen carrier
Due to the availability of large amount of natural gypsum worldwide,

it is considered widely as a low cost oxygen carrier for CLC systems.
Gypsum behaves environmentally benign in the oxidized state and can
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transport high level of oxygen when acting as an OC (Song et al., 2008a).
The composition of gypsum is CaSO,- 2H,0 with the active compound
being CaSO,. A large benefit of using gypsum ore is that it naturally con-
tains a large amount of CaSO, (60-70%). The main impurities in gyp-
sum (aside from the entrained water) are SiO,, AIZO3, CaCO,, MgCO, and
Fe O, (Wilder, 1918). Again a calcination step for the ore is required to
remove the water from the ore. The dehydrated gypsum ore (now pri-
marily CaSO,) is commonly called anhydrite but the terms have been
found to be synonymous in literature. Anhydrite ore also occurs in na-
ture but is rarer than gypsum.

The main benefit of using a gypsum OC is the large oxygen transport
capacity of CaSO,. This reduces the required OC demand and the amount
of OC required to circulate the fuel and air reactors. Information on the
general use of CaSO, as an OC in CLC can be found in literature (Guo et
al., 2012). The most prolific use of Ca based ores in CLC can be found in a
3MW, solid fuels plant by Alstom. This process uses limestone (primarily
CaCO,) converted to CaSO, by sulfur released from coal, thus also achiev-
ing in-situ desulphurization. The process was recently reviewed by Abad
et al. (2017). The reduction kinetics of CaSO . with CO in a differential
fixed bed is studied by Zheng et al. (2011) and Xiao et al. (2010b). Song et
al. (2009) investigated a CaSO, oxygen carrier by thermodynamic anal-
ysis and thermogravimetric analysis. It has been proved that CaSO,/CaS
is an effective oxygen carrier in a CLC system (Moghtaderi, 2012). One
main concern with CaSO, CLC operation is low fuel conversions (Ding et
al., 2011; Zheng et al., 2014). However many studies found that increas-
ing the fuel reactor temperature conversions can be improved to reason-
able levels (Song et al., 2008a; Zheng et al., 2014; Zhang et al., 2013). The
downside to this increase in operating temperatures is that the emission
of H,S and SO, gas from the OC become unavoidable. Low CO concentra-
tion may also increase sulfur emission (Zheng et al., 2011). This may be
preventable by the addition of supplementary components as will be ad-
dressed in subsequent sections. The use of CaSO, OCs in multiple consec-
utive CLC cycles has also been investigated (Zhang et al., 2013; Song et
al., 2008b). Conversions were seen to slowly decrease the first 15 cycles
followed by a sharp decrease after that. Large amounts of SO, were emit-
ted corresponding to the decomposition of the OC which explains the de-
creased performance. Slight agglomeration and sintering were also noted.
A collection of results can be found in Table 6.
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3.5. Mixed ores and modifications

It is clear that different metal oxides and different ores perform very dif-
ferently in CLC processes. While ores may perform well in some aspects
they all have some improvements that can be made. The easiest way to
alleviate these issues is to physically mix two separate ores together. By
grinding and then subsequently blending two ores together additional
processing costs are avoided but synergistic effects may result. Many re-
searchers have also tried to avoid these downfalls by making small modi-
fications to the ores themselves with the addition of different compounds.
It should be noted in the case of modifications (i.e. wet mixing, impregna-
tion, precipitation, sol-gel etc.) a natural (unprocessed) ore is no longer
being used and additional costs associated with this modification would
make the OC more expensive. However, most of the works focused on in-
expensive methods of modification. A collection of works detailing these
two modification methods can be found in Table 7. As the method of mod-
ification can influence the reactivity of an OC we have added the method
of modification to Table 7b. We also acknowledge that further work is re-
quired to determine the influence of mixing methods on OC properties
(Hu et al., 2014; Pour et al., 2013). Below we discuss how these mixes/
modifications influence the overall OC performance.

Most of the oxygen carrier mixes contained ilmenite and an additional
mineral. This is not surprising due to the overwhelming research into the
use of ilmenite as an OC. Linderholm et al. (2016) present a mix of ilmen-
ite with Mn ore to combust solid fuels. This led to an increased gas con-
version efficiency from 84.2% to 91.5% as well as improvements in CCE
and solid fuel conversion. This mixture exhibits CLOU properties noted
with manganese OC but an improved OC lifetime of 700-800 h when com-
pared to 50-290 h found for pure Mn ores. NiO oxygen carriers are known
for their activity for hydrocarbon decompositions to CO and H,. Rydén et
al. (2010) showed that the addition of a conventionally prepared Ni-based
OC to ilmenite could improve combustion efficiencies from 76% to 90%,
while maintaining low CO and H, emissions. However, the method of mix-
ing used for Fe/Ni OCs can greatly influence the combustion efficiency
(Pans et al., 2013). One study was found using blends of hematite and cop-
per ore to combust syngas and anthracite coal. This work suggested a syn-
ergistic effect between Cu and Fe ores, showing a non-liner increase in O,
transport capacity with a linear increase in Cu ore (Yang et al., 2014). An
optimized ratio of 8Cu:2Fe was chosen which showed improved fuel and
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gas conversions while maintaining the structural stability and sintering
resistance of iron ores (Yang et al., 2015).

Combination of multiple natural minerals (ilmenite with limestone or
natural olivine) can be cheap, environmentally friendly oxygen carriers,
and improves the hydrocarbon conversion moderately. Two studies were
found using an addition of limestone (calcined and sulfureted) to ilmen-
ite. This addition showed a greater gas conversion of CO to CO_, faster fuel
conversions and reduced SO, emissions. The first two effects were linked
to the catalytic effect that calcined limestone (CaO) has on the water-gas
shift reaction and char gasification. The reduced SO, emissions were the
result of CaSO, being produced and capturing released SO, from the fuel
(Teyssie et al., 2011; Cuadrat et al., 2011b). Cement has also been added to
ilmenite and CaO blends. This combination also showed an improved car-
bon conversions but showed a further improvement in CO, yield and sin-
tering prevention. Olivine, a naturally occurring mineral with a formula
of (Fe,Mg),SiO,, was found to moderately improve CH, conversions, which
was found to be a concern with ilmenite in other work (Leion et al., 2009a;
Proll et al., 2009). Sulfur release was shown to be a large issue in CaSO,
OC use (Guo et al., 2012). A mixture of natural iron ore and anhydrite ore
has been tested to lessen this problem. A mixture of 7% Fe O, in natu-
ral anhydrite ore was shown to not only improve CO, conversion but also
reduce SO, emission by 77% and reduce H,S emissions to trace amounts
(Zheng et al., 2014). However after multiple cycles the emissions of SO,
may rise back to unsatisfactory levels. It is also postulated that a synergis-
tic effect may take place between the Fe ore and anhydrite that improves
char gasification and volatile combustion (Ding et al., 2015).

Chemical additions to natural ores also showed a substantial increase
in OC performance. Most studies employed a wet or dry impregnation
method that doped the ore with an additional compound. Two categories
could be made from the works found based on the compound added be-
ing the addition of an additional oxygen carrier or alkali metal for cata-
lytic effects. Addition of an oxygen carrier should present similar conver-
sion effects to physical mixing of OC while actually bonding the two OCs
together. Four studies were found binding Cu to Mn ore, Cu to Fe ore, Fe
to Mn ore and Mn to Fe ore. When Cu is added to Mn ore a possible syn-
ergistic effect was noted and potential CLOU properties were observed.
While all of the samples showed complete CO conversion, the major influ-
ence this addition had was a prolonged conversion time, likely due to an
increased oxygen transport capacity (Xu et al., 2014). The addition of Cu
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to Fe ore also showed a higher CO conversion as well as an increase in C
conversion (Yang et al., 2014). In a dual study by Haider et al. (Haider et
al., 2016) the synergy of Fe ore with Mn additions and Mn ore with Fe ad-
ditions was investigated. Comparing with the simplex natural ores, both
additions showed the attrition decreased and surface area increased, im-
proving the physical characteristics of the OCs. Both additions showed an
improved syngas conversions. The addition of Fe O, to anhydrite ore was
shown to improve upon the characteristics see for the physical mixing of
Fe ore with anhydrite. An 85% inhibition of SO, release was shown along
with higher conversions of CO and H, and stability (Zhang et al., 2013).

Potassium addition to ilmenite and iron ore was investigated in two
separate works. When added to iron ore carbon conversions were able
to be increased from 79% to 90% with improved reaction rates and im-
proved CO conversions. In this work the lowest loading (6%) of potas-
sium was mentioned to be the best. However, after multiple cycles the cat-
alytic effect of the potassium was decreased and it was observed that the
added potassium was being lost with the coal ash (Gu et al., 2012). When
added to ilmenite, potassium was also observed to improve the reactiv-
ity towards CO. Not only were conversions improved but an increased K
loading showed an 8 times increase in reaction rate and an improved pore
volume. This work also investigated Na and Ca additions but noted that K
had the best effect (Bao et al., 2013). Potassium addition was also found to
improve gasification rates in coal combustion when coupled with a CaSO,
ore (Guo et al., 2014). Ca(OH), addition to various Mn ores was also inves-
tigated. This study also observed a decreased attrition rate and the abil-
ity to fully convert syngas. CH, conversions were also improved (Pour et
al., 2013). Fossdal et al. (2011) also investigated the addition of calcium
to manganese ore resulting in an oxygen capacity of 4.5 wt% and poten-
tial advantages in terms of kinetics and chemical and mechanical stabil-
ity (Table 8).

3.6. Comparison of natural ores with conventional OC

We have put together a comparison matrix based on the results found for
the use of ores as oxygen carriers in chemical looping combustion. Each
cell in the matrix receives a plus or minus rating based on the individual
OC’s performance for that criteria. A — rating means the OC does not per-
form well in respect to this subject, a +/— means the OC has a neutral per-
formance for this category and a score of + means the OC performs better
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than most at this category. This ranking system allows us to qualitatively
compare different OCs and highlight individual strengths while pointing
out areas where further work is required. The purified ores are for com-
parison are assumed to be bound to some (AL O,, SiO,, CeO, etc.) support.
Values for the conventional OCs are based off of works by Demirel et al.
(2015), Cho et al. (2004) and Hedayati (2011).

Data routinely shows that synthetic OCs display better reactivity than
ores (Thon et al., 2014). Interestingly Mn ores show higher conversions
than purified Mn OCs. This could be the result of Mn-Fe compounds
formed from iron impurities in the ore. We also observe that while ores
fare comparatively well in the conversion of syngas and coal, CH, com-
bustion results are prohibitively low for most ores. Typical values floated
around 35% for CH, conversions and peaking in the low 80% for some Fe
based ores. With the inclusion of cost and processing requirements the to-
tal values for ores tend to be higher than purified components. Except in
the case of Ca-based OCs, as gypsum ores do not require much process-
ing due to the natural CaSO, purity. llmenite shows the highest promise
as a viable ore-based oxygen carrier and it is no surprise the majority of
works using ore as an OC are based on ilmenite.

4. Future work

Chemical looping combustion technology, when compared to conventional
energy production, is still in its infancy. The possibility of future innova-
tions in this field are truly endless and this is especially true with the use
of ores as oxygen carriers. [lmenite has been a widely studied ore but in-
vestigations into the best type of ilmenite needs to be addressed. The vari-
ances in trace components could play a large role in char conversion and
ultimate fuel efficiency. The mechanism explaining the activation of ilmen-
ite with multiple redox cycles is that the pores in the ore are expanded.
Investigations into the mechanical stability, including health, safety, and
attrition rates, of ilmenite after activation would be a beneficial study. A
wide array of iron ores has also been tested and much like ilmenite the in-
fluence of trace components in the ores is largely unknown. Further inves-
tigation into the use of iron ores in the combustion of gaseous fuels was
found to be a shortcoming of current works. Mn ore and Mn O, oxygen
carriers seem to have attrition and fines production issues. Despite me-
chanical property problems Mn ores do show good performance in terms
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of solid fuel conversion. Multiple works were found comparing many ores
with multiple sources. Further work optimizing reactor conditions for Mn
ores showing promise could lead to a decrease in fines production and im-
proved feasibility of using Mn ore OCs. The main limitation of works us-
ing Cu ore is the limited variety of ores studied. Over half of the studies
found used the same ore. Further investigation into multiple ore sources
needs to be investigated to further knowledge in this area. Cu ore shows
promise in terms of fuel conversion but the low melting point of Cu causes
sintering and agglomeration issues. Lower temperature studies should be
conducted to investigate conversions while limiting mechanical property
issues. Mn and Cu ores also show some CLOU properties and further in-
vestigations into this work would also be of benefit.

The combination of ores and minor additions to ores showed large im-
provements in the results of most OCs. Synergies of different ore mixes
should be investigated. Nickel-based ores have been largely uninvesti-
gated likely because of their low concentration of Ni. However the effec-
tive catalytic effect of Ni on CH, combustion is worth mentioning and Ni
ore mixing may be a topic worth study. Calcium based oxygen carriers
have also been utilized in CLC operations. Natural anhydrite ore of cal-
cium contains up to 95% CaSO, and would be an ideal ore to study due to
its high O, transport capacity. However processing conditions would need
to be carefully tuned to limit SO, emissions. Dolomite has shown promise
as a catalyst for solid fuel gasification and might be a valuable addition
in solid fuel CLC (Sutton et al., 2001). As well, different compound addi-
tions using the calcination step would a valuable investigation. As the cal-
cination process is required for most ores this would be a cheap method
of modification. Catalytic additions like alkali metals, perovskite materials
or additional metal oxides could be beneficial to CH, conversions or char
gasification, which were identified as limiting for most ores studied. As
the calcination process is something that most ores require, future work
minimizing the energy intensity of this process would be beneficial be-
fore large scale processing is realized.

Further feasibility studies based on all ores would be required before
an ultimate decision could be made on the use of ores as oxygen carriers
in CLC. A large portion of the works found used either small bench scale
reactors or TGA results. While an excellent low cost way to evaluate the
effectiveness of an oxygen carrier expansion of these works including the
use of a full scale CLC system is required to make ultimate conclusions on
the use of natural ores as OCs in CLC. Much more work is required in this
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area but the rise in interest in this research has led to the production of
numerous full scale units used for testing. It is also important to include
environmental considerations, not only technical and economic concerns
in feasibility studies (Matzen et al., 2015). An OCs impact on the workers,
waste water, exhaust gas, and solid waste should be evaluated. Process
safety requires the evaluation of exposure and safe concentrations of OCs
during handling of intensely used OCs (Geerts et al., 2017). A techno-eco-
nomic analysis coupled to a life cycle assessment of the entire ore produc-
tion process and use in CLC would be an effective way to investigate the
true feasibility of ore use as an OC.

5. Conclusions

In this work we have conducted a review on the recent use of ores as oxy-
gen carriers in chemical looping combustion technologies. Ores may pres-
ent an exciting technology in OCs because of their cheap cost, inherent
mechanical properties and lack of expensive processing required to func-
tion. From the literature studied, ilmenite presents the most likely candi-
date for use as an oxygen carrier, largely due to its mechanical strength
and stability. These properties and reasonable fuel conversions allow il-
menite to be used as a long lived OC in CLC units without high makeup
costs due to attrition, deactivation or physical losses. However, all of the
ores studied (Fe-, Mn-, Cu-, and Ca- based) show promising results for
use in the combustion of coal and syngas fuels. CH, based fuels showed
low fuel conversions for all ores studied and therefore, without additional
research, should not be considered viable fuel for ore based CLC. Mixed
ores and ores with minor modifications show improved combustion ef-
ficiencies and present sustainable OCs. These additionally modified ores
were able to make up for some of the negative aspects of ore use in CLC
but much more research could be done. While current work is substan-
tial in this field we presented many aspects and shortcomings that could
use more detailed investigation. In summary while performance of natu-
ral ores in CLC was observed to be slightly lower than synthetic OCs, nat-
ural ores present a cheaper and more sustainable source of OCs for CLC.
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Fig. 1. Chemical looping technology: (a) Circulating fluidized bed (pressurized), (b) Fixed
bed reactor with periodically changing input streams.

Table 1. Natural ores tested as oxygen carriers, showing typical component composi-

tions (Demirel et al., 2015).

Oxygen Active
carrier component(s) Composition (%)
CuO Fe,0, ALO,  SiO, TiO, Caso,

Chryscolla CuO 64.41 1.34 7.73 24.59 0.93 -
Cuprite Cu,0 15.7 2.66 18.18 61.04 2.09 -
Malachite CuO/Fe203 15.08 12.12 12.82 52.64 7.08 -
Hematite Fe O, 0.76 94.23 2.55 1.39 1.01 -
Ilmenite Fe203/TiO2 0.76 46.01 6.26 10.84 36 -
Limonite Fe,O, 2.184 66.97 8.78 18.11 3.79 -
Magnetite Fe O, 0.88 88.23 2.9 6.27 1.64 -
Taconite Fe,O, 2.51 79.46 8.55 4.5 4.83 -

Anhydrite  CaSO, -

- - - - 94.38
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Table 8. Decision matrix for natural ore OCs and purified component OCs.

Fe-based Mn-based Cu-based Ca-based

Ilmenite  Fe Ore Fe,O, MnOre MnO, CuOre CuO CaOre CaSO,

Fuel Conversion

Syngas +/= +/= + + + + + +/- +
CH, +/- +/- +/- +/- - +/- + +/- +/-
Coal + + + +/- +/- + + +/- +/-

Physical Properties

Agglomeration + + +/- +/- + - +/- +/- +/—
Sintering + + + + +/- +/- - +/- +/—
Attrition + +/= + - +/- +/- +/- + +
Miscellaneous
O, Transport +/= +/= +/= +/= + + + + +
Stability + + + +/- +/- + + _ _
Cost + + +/- + - +/- - + +
Processing Ease + + - + - + - + +/—

Funding — This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.
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