11 research outputs found

    Geochemistry and origin of the Asimotrypes carbonate hosted mesothermal gold deposit, Pangeon mountain, N. Greece

    No full text
    The Asimotrypes mesothermal gold deposit located in the Pangeon Mt (E. Macedonia, N. Greece), is part of the Western Rhodope Massif (WRM), which represents the metamorphic core complex of an alpine collision orogen. Alpine metamorphism, of U. Cretaceous - M. Eocene age, reached upper greenschist to lower amphibolite conditions. A low-pressure greenshist fades retrograde overprint during uplift marked the end of Alpine metamorphism in the Miocene. Post-metamorphic Miocene uplift has been recognised in the Pangeon Mt and it was ascribed to Late Cainozoic extensional tectonics.The Asimotrypes ore, of replacement and shear-zone style consists mainly of arsenopyrite, pyrite and gold, with subordinate sphalerite, galena, chalcopyrite, pyrrhotite, tetrahedrite-tennantite, marcasite, covellite and malachite. Gold is either refractory occurring mainly in arsenopyrite and to a lesser extent in Aspyrite, or free in the oxide minerals.Three types of fluid inclusions (with subtypes) were recognised based on constituent phases at room temperature and microthermometric behaviour: (i) H2O-CO2 3-phase inclusions: L1 (H2O)+L2 (CO2)+V (CO2); (ii) Aqueous 2-phase inclusions: L+V; and (iii) Naturally decrepitated and/or leaked inclusions: V or L+V. The fluids have low salinity (<5 wt % NaCl equiv.), but variable CO2/H2O ratios. Microthermometric studies in gangue quartz indicate early ore deposition at P-T conditions of 275º-310ºC and 2.7-3.1 kb during unmixing of the mineralising fluids, followed by deposition at temperatures down to 130ºC and low near surface pressures. δ34S values of primary sulphide minerals suggest a magmatic source for the sulphur. δ13C values in marble calcite are indicative of a marine environment of deposition, also supported by a plot of δ13C versus δ18O for the same samples. Calculated isotopic composition of ore fluids in quartz, sericite and whole rock at 275ºC and 340ºC are consistent with values of metamorphic fluids. Whole rock hydrogen isotopic composition of -117±7.5 (lσ) indicates that the mineralising fluid was of meteoric origin. Sr isotope data implies seawater origin for strontium. Lead isotope data in ores from the Rhodope showed that Pb is derived from crustal rock types.  Sulphide species such as Au (HS)-2, were probably the most effective complexing agents for gold in the Asimotrypes fluids, which were typically low in salinity. A decrease of sulphur species activity and cooling are suggested to be the favoured depositional mechanism in a reducing environment. Combined with geological evidence, the fluid inclusion and stable data of the Asimotrypes gold ore, are consistent with genesis from deeply convecting meteoric waters driven by regional uplift through rocks undergoing retrogressive greenschist facies metamorphism

    Trace Element Distribution in Magnetite Separates of Varying Origin: Genetic and Exploration Significance

    No full text
    Magnetite is a widespread mineral, as disseminated or massive ore. Representative magnetite samples separated from various geotectonic settings and rock-types, such as calc-alkaline and ophiolitic rocks, porphyry-Cu deposit, skarn-type, ultramafic lavas, black coastal sands, and metamorphosed Fe–Ni-laterites deposits, were investigated using SEM/EDS and ICP-MS analysis. The aim of this study was to establish potential relationships between composition, physico/chemical conditions, magnetite origin, and exploration for ore deposits. Trace elements, hosted either in the magnetite structure or as inclusions and co-existing mineral, revealed differences between magnetite separates of magmatic and hydrothermal origin, and hydrothermal magnetite separates associated with calc-alkaline rocks and ophiolites. First data on magnetite separates from coastal sands of Kos Island indicate elevated rare earth elements (REEs), Ti, and V contents, linked probably back to an andesitic volcanic source, while magnetite separated from metamorphosed small Fe–Ni-laterites occurrences is REE-depleted compared to large laterite deposits. Although porphyry-Cu deposits have a common origin in a supra-subduction environment, platinum-group elements (PGEs) have not been found in many porphyry-Cu deposits. The trace element content and the presence of abundant magnetite separates provide valuable evidence for discrimination between porphyry-Cu–Au–Pd–Pt and those lacking precious metals. Thus, despite the potential re-distribution of trace elements, including REE and PGE in magnetite-bearing deposits, they may provide valuable evidence for their origin and exploration

    Mineralogical and geochemical characteristics of the Skouries porphyry-Cu-Au-Pd-Pt deposit (Greece): Evidence for the precious metal

    No full text
    SEM/EDS studies on drill core samples from the deeper parts of the Skouries deposit showed frequent association of magnetite and Cu-minerals (bornite and chalcopyrite) with inclusions of thorite, U-bearing thorite, hydroxyl-apatite and rare earth element (REE)-enriched silicates of the epidote-group (allanite), zircon and rutile, linked to pervasive potassic and propylitic alteration type, in the central parts of the deposit. Isotopic and fluid inclusion trends in the Skouries porphyry Cu deposit seem to be systematic, beginning with high delta 180 and low delta D values for fluids in equilibrium with vein quartz representative of the main stage of Cu, Au, Pd, Pt mineralization, to low delta 180 and high delta D values for fluids linked with the pyrite-chalcopyrite mineralization. Mineralised porphyry from the peripheral parts of the deposit, characterized by the presence of xenoliths of mafic rock contain up to 690 ppm Cr, which is mainly hosted in disseminated fine grained-magnetite. Its Cr content ranges from 0.30 to 2.26 wt% Cr2O3, in contrast to the Cr-free magnetite accompanying the quartz veins of the main porphyry. Such a relatively high Cr content, despite the evolved geochemical signature, indicates that the high Pd and Pt mineralization in the porphyry deposit of the Skouries may be linked to the incorporation of PGE-enriched material either in the mantle source and/or within the crust at depth, prior to final emplacement

    Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula

    No full text
    Porphyry Cu–Au–Pd±Pt deposits are significant Au resources, but their Pd and Pt potential is still unknown. Elevated Pd, Pt (hundreds of ppb) and Au contents are associated with typical stockwork magnetite-bornite-chalcopyrite assemblages, at the central parts of certain porphyry deposits. Unexpected high grade Cu–(Pd+Pt) (up to 6 ppm) mineralization with high Pd/Pt ratios at the Elatsite porphyry deposit, which is found in a spatial association with the Chelopech epithermal deposit (Bulgaria) and the Skouries porphyry deposit, may have formed during late stages of an evolved hydrothermal system. Estimated Pd, Pt and Au potential for porphyry deposits is consistent with literature model calculations demonstrating the capacity of aqueous vapor and brine to scavenge sufficient quantities of Pt and Pd, and could contribute to the global platinum-group element (PGE) production. Critical requirements controlling potential of porphyry deposits may be from the metals contained in magma (metasomatized asthenospheric mantle wedge as indicated by significant Cr, Co, Ni and Re contents). The Cr content may be an indicator for the mantle input

    Origin of Critical Metals in Fe–Ni Laterites from the Balkan Peninsula: Opportunities and Environmental Risk

    No full text
    As the global energy sector is expected to experience a gradual shift towards renewable energy sources, access to special metals in known resources is of growing concern within the EU and at a worldwide scale. This is a review on the Fe–Ni ± Co-laterite deposits in the Balkan Peninsula, which are characterized by multistage weathering/redeposition and intense tectonic activities. The ICP-MS analyses of those laterites indicated that they are major natural sources of Ni and Co, with ore grading from 0.21 to 3.5 wt% Ni and 0.03 to 0.31 wt% Co, as well as a significant Sc content (average 55 mg/kg). The SEM-EDS analyses revealed that fine Fe-, Ni-, Co-, and Mn-(hydr)oxides are dominant host minerals and that the enrichment in these elements is probably controlled by the post-formation evolution of initial ore redeposition. The paucity of rare earth element (REE) within the typical Fe–Ni laterite ore and the preferential occurrence of Co (up to 0.31 wt%), REE content (up to 6000 mg/kg ΣREE), and REE-minerals along with Ni, Co, and Mn (asbolane and silicates) towards the lowermost part of the Lokris (C. Greece) laterite ore suggest that their deposition is controlled by epigenetic processes. The platinum-group element (PGE) content in those Fe–Ni laterites, reaching up to 88 μg/kg Pt and 26 μg/kg Pd (up to 186 μg/kg Pd in one sample), which is higher than those in the majority of chromite deposits associated with ophiolites, may indicate important weathering and PGE supergene accumulation. Therefore, the mineralogical and geochemical features of Fe–Ni laterites from the Balkan Peninsula provide evidence for potential sources of certain critical metals and insights to suitable processing and metallurgical methods. In addition, the contamination of soil by heavy metals and irrigation groundwater by toxic Cr(VI), coupled with relatively high Cr(VI) concentrations in water leachates for laterite samples, altered ultramafic rocks and soils neighboring the mining areas and point to a potential human health risk and call for integrated water–soil–plant investigations in the basins surrounding laterite mines

    Mineralogical and Geochemical Constraints on the Origin of Mafic–Ultramafic-Hosted Sulphides: The Pindos Ophiolite Complex

    No full text
    Sulphide ores hosted in deeper parts of ophiolite complexes may be related to either primary magmatic processes or links to hydrothermal alteration and metal remobilization into hydrothermal systems. The Pindos ophiolite complex was selected for the present study because it hosts both Cyprus-type sulphides (Kondro Hill) and Fe–Cu–Co–Zn sulphides associated with magnetite (Perivoli-Tsoumes) within gabbro, close to its tectonic contact with serpentinized harzburgite, and thus offers the opportunity to delineate constraints controlling their origin. Massive Cyprus-type sulphides characterized by relatively high Zn, Se, Au, Mo, Hg, and Sb content are composed of pyrite, chalcopyrite, bornite, and in lesser amounts covellite, siegenite, sphalerite, selenide-clausthalite, telluride-melonite, and occasionally tennantite–tetrahedrite. Massive Fe–Cu–Co–Zn-type sulphides associated with magnetite occur in a matrix of calcite and an unknown (Fe,Mg) silicate, resembling Mg–hisingerite within a deformed/metamorphosed ophiolite zone. The texture and mineralogical characteristics of this sulphide-magnetite ore suggest formation during a multistage evolution of the ophiolite complex. Sulphides (pyrrhotite, chalcopyrite, bornite, and sphalerite) associated with magnetite, at deeper parts of the Pindos (Tsoumes), exhibit relatively high Cu/(Cu + Ni) and Pt/(Pt + Pd), and low Ni/Co ratios, suggesting either no magmatic origin or a complete transformation of a preexisting magmatic assemblages. Differences recorded in the geochemical characteristics, such as higher Zn, Se, Mo, Au, Ag, Hg, and Sb and lower Ni contents in the Pindos compared to the Othrys sulphides, may reflect inheritance of a primary magmatic signature

    Origin of Critical Metals in Fe-Ni Laterites from the Balkan Peninsula: Opportunities and Environmental Risk

    No full text
    As the global energy sector is expected to experience a gradual shift towards renewable energy sources, access to special metals in known resources is of growing concern within the EU and at a worldwide scale. This is a review on the Fe-Ni +/- Co-laterite deposits in the Balkan Peninsula, which are characterized by multistage weathering/redeposition and intense tectonic activities. The ICP-MS analyses of those laterites indicated that they are major natural sources of Ni and Co, with ore grading from 0.21 to 3.5 wt% Ni and 0.03 to 0.31 wt% Co, as well as a significant Sc content (average 55 mg/kg). The SEM-EDS analyses revealed that fine Fe-, Ni-, Co-, and Mn-(hydr)oxides are dominant host minerals and that the enrichment in these elements is probably controlled by the post-formation evolution of initial ore redeposition. The paucity of rare earth element (REE) within the typical Fe-Ni laterite ore and the preferential occurrence of Co (up to 0.31 wt%), REE content (up to 6000 mg/kg sigma REE), and REE-minerals along with Ni, Co, and Mn (asbolane and silicates) towards the lowermost part of the Lokris (C. Greece) laterite ore suggest that their deposition is controlled by epigenetic processes. The platinum-group element (PGE) content in those Fe-Ni laterites, reaching up to 88 mu g/kg Pt and 26 mu g/kg Pd (up to 186 mu g/kg Pd in one sample), which is higher than those in the majority of chromite deposits associated with ophiolites, may indicate important weathering and PGE supergene accumulation. Therefore, the mineralogical and geochemical features of Fe-Ni laterites from the Balkan Peninsula provide evidence for potential sources of certain critical metals and insights to suitable processing and metallurgical methods. In addition, the contamination of soil by heavy metals and irrigation groundwater by toxic Cr(VI), coupled with relatively high Cr(VI) concentrations in water leachates for laterite samples, altered ultramafic rocks and soils neighboring the mining areas and point to a potential human health risk and call for integrated water-soil-plant investigations in the basins surrounding laterite mines

    The Cardioprotective PKA-Mediated Hsp20 Phosphorylation Modulates Protein Associations Regulating Cytoskeletal Dynamics

    No full text
    The cytoskeleton has a primary role in cardiomyocyte function, including the response to mechanical stimuli and injury. The small heat shock protein 20 (Hsp20) conveys protective effects in cardiac muscle that are linked to serine-16 (Ser16) Hsp20 phosphorylation by stress-induced PKA, but the link between Hsp20 and the cytoskeleton remains poorly understood. Herein, we demonstrate a physical and functional interaction of Hsp20 with the cytoskeletal protein 14-3-3. We show that, upon phosphorylation at Ser16, Hsp20 translocates from the cytosol to the cytoskeleton where it binds to 14-3-3. This leads to dissociation of 14-3-3 from the F-actin depolymerization regulator cofilin-2 (CFL2) and enhanced F-actin depolymerization. Importantly, we demonstrate that the P20L Hsp20 mutation associated with dilated cardiomyopathy exhibits reduced physical interaction with 14-3-3 due to diminished Ser16 phosphorylation, with subsequent failure to translocate to the cytoskeleton and inability to disassemble the 14-3-3/CFL2 complex. The topological sequestration of Hsp20 P20L ultimately results in impaired regulation of F-actin dynamics, an effect implicated in loss of cytoskeletal integrity and amelioration of the cardioprotective functions of Hsp20. These findings underscore the significance of Hsp20 phosphorylation in the regulation of actin cytoskeleton dynamics, with important implications in cardiac muscle physiology and pathophysiology

    The role of gene polymorphisms in endometriosis

    No full text
    Endometriosis is a benign gynecologic disorder, affecting up to 10% of women, characterized by the presence of functional endometrial tissue at ectopic positions generally within the peritoneum. It is a heritable condition influenced by multiple genetic and environmental factors, with an overall heritability estimated at approximately 50%. In this study, we investigated whether single nucleotide polymorphisms (SNPs) rs7521902, rs10859871 and rs11031006, mapping to WNT4, VEZT and FSHB genetic loci, respectively, are associated with risk for endometriosis in a Greek population. This study included 166 women with histologically confirmed endometriosis diagnosed through surgery and 150 normal controls. Genotyping of the rs7521902, rs10859871 and rs11031006 SNPs was performed with Taqman primer/probe sets. A significant association was detected with the AC genotype of rs7521902 (WNT4) in patients with stage III and IV disease only. Evidence for association with endometriosis was also found for the AC genotype of the rs10859871 of VEZT. Notably, a significant difference in the distribution of the AG genotype and the minor allele A of FSHB rs11031006 SNP was found between the endometriosis patients and controls. We found a genetic association between rs11031006 (FSHB) SNP and endometriosis. WNT4 and VEZT genes constitute the most consistently associated genes with endometriosis. In the present study, an association of rs7521902 (WNT4) and rs10859871 (VEZT) was confirmed in women with endometriosis at the genotypic but not the allelic level

    The role of IL‑16 gene polymorphisms in endometriosis

    No full text
    Endometriosis is one of the most common gynecological diseases affecting up to 10% of the female population of childbearing age and a major cause of pain and infertility. It is influenced by multiple genetic, epigenetic and environmental factors. Interleukin‑16 (IL‑16) is a proinflammatory cytokine playing a pivotal role in many inflammatory and autoimmune diseases as well as in the pathogenesis of endometriosis. The aim of the present study was to evaluate the association of two IL‑16 gene single nucleotide polymorphisms (SNPs), rs4072111 and rs11556218, with the risk of endometriosis in women from Greece as well as to gain insight about the structural consequences of these two exonic SNPs regarding development of the disease. A total of 159 women with endometriosis (stages I‑IV) hospitalized for endometriosis, diagnosed by laparoscopic intervention and histologically confirmed, and 146 normal controls were recruited and genotyped. Subjects were genotyped using a polymerase chain reaction restriction fragment length polymorphism (PCR‑RFLP) strategy. A significant association was detected regarding the GG and GT genotype as well as 'G' allele of rs11556218 in patients with endometriosis. The rs4072111 SNP of the IL‑16 gene was not found to be associated with an increased susceptibility to endometriosis either for all patients (stages I‑IV) or for stage III and IV of the disease only. Our results demonstrated that rs11556218 is associated with endometriosis in Greek women, probably by resulting in the aberrant expression of IL‑16, as suggested by the bioinformatics analysis conducted on the SNP‑derived protein sequences, which indicated a possible association between mutation and functional modification of Pro‑IL‑16
    corecore