46 research outputs found

    Physiologically based modelling of tranexamic acid pharmacokinetics following intravenous, intramuscular, sub-cutaneous and oral administration in healthy volunteers

    Get PDF
    BACKGROUND: Tranexamic acid (TXA) is an antifibrinolytic drug that reduces surgical blood loss and death due to bleeding after trauma and post-partum haemorrhage. Treatment success is dependent on early intervention and rapid systemic exposure to TXA. The requirement for intravenous (IV) administration can in some situations limit accessibility to TXA therapy. Here we employ physiologically based pharmacokinetic modelling (PBPK) to evaluate if adequate TXA exposure maybe achieved when given via different routes of administration. METHODS: A commercially available PBPK software (GastroPlus®) was used to model published TXA pharmacokinetics. IV, oral and intramuscular (IM) models were developed using healthy volunteer PK data from twelve different single dose regimens (n=48 participants). The model was verified using separate IV and oral validation datasets (n=26 participants). Oral, IM and sub-cutaneous (SQ) dose finding simulations were performed. RESULTS: Across the different TXA regimens evaluated TXA plasma concentrations varied from 0.1 to 94.0 µg/mL. Estimates of the total plasma clearance of TXA ranged from 0.091 to 0.104 L/h/kg, oral bioavailability from 36 to 67 % and Tmax from 2.6 to 3.2 and 0.4 to 1.0 hours following oral and intramuscular administration respectively. Variability in the observed TXA PK could be captured through predictable demographic effects on clearance, combined with intestinal permeability and stomach transit time following oral administration and muscle blood flow and muscle/plasma partition coefficients following intra-muscular dosing. CONCLUSIONS: This study indicates that intramuscular administration is the non-intravenous route of administration with the most potential for achieving targeted TXA exposures. Plasma levels following an IM dose of 1000 mg TXA are predicted to exceed 15 mg/mL in < 15 minutes and be maintained above this level for approximately 3 hours, achieving systemic exposure (AUC0-6) of 99 to 105 µg*hr/mL after a single dose. Well-designed clinical trials to verify these predictions and confirm the utility of intramuscular TXA are recommended

    Pharmacokinetics of intramuscular tranexamic acid in bleeding trauma patients: a clinical trial.

    Get PDF
    BACKGROUND: Intravenous tranexamic acid (TXA) reduces bleeding deaths after injury and childbirth. It is most effective when given early. In many countries, pre-hospital care is provided by people who cannot give i.v. injections. We examined the pharmacokinetics of intramuscular TXA in bleeding trauma patients. METHODS: We conducted an open-label pharmacokinetic study in two UK hospitals. Thirty bleeding trauma patients received a loading dose of TXA 1 g i.v., as per guidelines. The second TXA dose was given as two 5 ml (0·5 g each) i.m. injections. We collected blood at intervals and monitored injection sites. We measured TXA concentrations using liquid chromatography coupled to mass spectrometry. We assessed the concentration time course using non-linear mixed-effect models with age, sex, ethnicity, body weight, type of injury, signs of shock, and glomerular filtration rate as possible covariates. RESULTS: Intramuscular TXA was well tolerated with only mild injection site reactions. A two-compartment open model with first-order absorption and elimination best described the data. For a 70-kg patient, aged 44 yr without signs of shock, the population estimates were 1.94 h-1 for i.m. absorption constant, 0.77 for i.m. bioavailability, 7.1 L h-1 for elimination clearance, 11.7 L h-1 for inter-compartmental clearance, 16.1 L volume of central compartment, and 9.4 L volume of the peripheral compartment. The time to reach therapeutic concentrations (5 or 10 mg L-1) after a single intramuscular TXA 1 g injection are 4 or 11 min, with the time above these concentrations being 10 or 5.6 h, respectively. CONCLUSIONS: In bleeding trauma patients, intramuscular TXA is well tolerated and rapidly absorbed. CLINICAL TRIAL REGISTRATION: 2019-000898-23 (EudraCT); NCT03875937 (ClinicalTrials.gov)

    Hemokinin-1 Gene Expression Is Upregulated in Microglia Activated by Lipopolysaccharide through NF-κB and p38 MAPK Signaling Pathways

    Get PDF
    The mammalian tachykinins, substance P (SP) and hemokinin-1 (HK-1), are widely distributed throughout the nervous system and/or peripheral organs, and function as neurotransmitters or chemical modulators by activating their cognate receptor NK1. The TAC1 gene encoding SP is highly expressed in the nervous system, while the TAC4 gene encoding HK-1 is uniformly expressed throughout the body, including a variety of peripheral immune cells. Since TAC4 mRNA is also expressed in microglia, the resident immune cells in the central nervous system, HK-1 may be involved in the inflammatory processes mediated by these cells. In the present study, we found that TAC4, rather than TAC1, was the predominant tachykinin gene expressed in primary cultured microglia. TAC4 mRNA expression was upregulated in the microglia upon their activation by lipopolysaccharide, a well-characterized Toll-like receptor 4 agonist, while TAC1 mRNA expression was downregulated. Furthermore, both nuclear factor-κB and p38 mitogen-activated protein kinase intracellular signaling pathways were required for the upregulation of TAC4 mRNA expression, but not for the downregulation of TAC1 mRNA expression. These findings suggest that HK-1, rather than SP, plays dominant roles in the pathological conditions associated with microglial activation, such as neurodegenerative and neuroinflammatory disorders

    Evaluation of Mucociliary Clearance by Three Dimension Micro-CT-SPECT in Guinea Pig: Role of Bitter Taste Agonists

    Get PDF
    Different image techniques have been used to analyze mucociliary clearance (MCC) in humans, but current small animal MCC analysis using in vivo imaging has not been well defined. Bitter taste receptor (T2R) agonists increase ciliary beat frequency (CBF) and cause bronchodilation but their effects in vivo are not well understood. This work analyzes in vivo nasal and bronchial MCC in guinea pig animals using three dimension (3D) micro-CT-SPECT images and evaluates the effect of T2R agonists. Intranasal macroaggreggates of albumin-Technetium 99 metastable (MAA-Tc99m) and lung nebulized Tc99m albumin nanocolloids were used to analyze the effect of T2R agonists on nasal and bronchial MCC respectively, using 3D micro-CT-SPECT in guinea pig. MAA-Tc99m showed a nasal mucociliary transport rate of 0.36 mm/min that was increased in presence of T2R agonist to 0.66 mm/min. Tc99m albumin nanocolloids were homogeneously distributed in the lung of guinea pig and cleared with time-dependence through the bronchi and trachea of guinea pig. T2R agonist increased bronchial MCC of Tc99m albumin nanocolloids. T2R agonists increased CBF in human nasal ciliated cells in vitro and induced bronchodilation in human bronchi ex vivo. In summary, T2R agonists increase MCC in vivo as assessed by 3D micro-CT-SPECT analysis

    ptairMS: real-time processing and analysis of PTR-TOF-MS data for biomarker discovery in exhaled breath

    No full text
    International audienceMotivation: Analysis of volatile organic compounds (VOCs) in exhaled breath by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is of increasing interest for real-time, non-invasive diagnosis, phenotyping and therapeutic drug monitoring in the clinics. However, there is currently a lack of methods and software tools for the processing of PTR-TOF-MS data from cohorts and suited for biomarker discovery studies. Results: We developed a comprehensive suite of algorithms that process raw data from patient acquisitions and generate the table of feature intensities. Notably, we included an innovative two-dimensional peak deconvolution model based on penalized splines signal regression for accurate estimation of the temporal profile and feature quantification, as well as a method to specifically select the VOCs from exhaled breath. The workflow was implemented as the ptairMS software, which contains a graphical interface to facilitate cohort management and data analysis. The approach was validated on both simulated and experimental datasets, and we showed that the sensitivity and specificity of the VOC detection reached 99% and 98.4%, respectively, and that the error of quantification was below 8.1% for concentrations down to 19 ppb. Availability and implementation: The ptairMS software is publicly available as an R package on Bioconductor (doi: 10.18129/B9.bioc.ptairMS), as well as its companion experiment package ptairData (doi: 10.18129/B9.bioc.ptairData

    Development and characterization of electronic noses for the rapid detection of COVID-19 in exhaled breath

    No full text
    International audienceNon-invasive and rapid approach is potentially needed for diagnosis of COVID-19. In this work, exhaled breath analysis using e-Nose, is presented as an innovative technique to identify the COVID-19 specific VOCs. The analytical performances of Cyranose®, a commercial e-Nose device, were investigated under controlled conditions. Sensitivity, limit of detection and reproducibility of standardized VOCs existing in the breath was assessed. In addition, the effect of various experimental conditions on sensor response was evaluated, including temperature, relative humidity, flow and sampling time, aiming to select the optimal parameters and to validate it in clinical trials to detect the COVID-19 biomarkers. Cyranose® exhibits high sensitivity and reproducible response towards acetone and nonanal, with a limit of detection of 63 ppb and 20 ppb respectively. Furthermore, results show that the variability of relative humidity, temperature and flow sampling, induced a significant sensors response variation, whereas, varying the sampling time does not affect significantly the sensor response

    Development and characterization of electronic noses for the rapid detection of COVID-19 in exhaled breath

    No full text
    International audienceNon-invasive and rapid approach is potentially needed for diagnosis of COVID-19. In this work, exhaled breath analysis using e-Nose, is presented as an innovative technique to identify the COVID-19 specific VOCs. The analytical performances of Cyranose®, a commercial e-Nose device, were investigated under controlled conditions. Sensitivity, limit of detection and reproducibility of standardized VOCs existing in the breath was assessed. In addition, the effect of various experimental conditions on sensor response was evaluated, including temperature, relative humidity, flow and sampling time, aiming to select the optimal parameters and to validate it in clinical trials to detect the COVID-19 biomarkers. Cyranose® exhibits high sensitivity and reproducible response towards acetone and nonanal, with a limit of detection of 63 ppb and 20 ppb respectively. Furthermore, results show that the variability of relative humidity, temperature and flow sampling, induced a significant sensors response variation, whereas, varying the sampling time does not affect significantly the sensor response
    corecore