121 research outputs found

    Quantum Teleportation from a Propagating Photon to a Solid-State Spin Qubit

    Full text link
    The realization of a quantum interface between a propagating photon used for transmission of quantum information, and a stationary qubit used for storage and manipulation, has long been an outstanding goal in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation, which has attracted considerable interest not only as a versatile quantum-state-transfer method but also as a quantum computational primitive. Here, we experimentally demonstrate transfer of quantum information carried by a photonic qubit to a quantum dot spin qubit using quantum teleportation. In our experiment, a single photon in a superposition state of two colors -- a photonic qubit is generated using selective resonant excitation of a neutral quantum dot. We achieve an unprecedented degree of indistinguishability of single photons from different quantum dots by using local electric and magnetic field control. To teleport a photonic qubit, we generate an entangled spin-photon state in a second quantum dot located 5 meters away from the first and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. A coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after its coherence time is prolonged by an optical spin-echo pulse sequence. The demonstration of successful inter-conversion of photonic and semiconductor spin qubits constitute a major step towards the realization of on-chip quantum networks based on semiconductor nano-structures.Comment: 12 pages, 3 figures, Comments welcom

    Ultra-strong light–matter coupling for designer Reststrahlen band

    Get PDF
    The strength of the light–matter interaction depends on the number of dipoles that can couple with the photon trapped in an optical cavity. The coupling strength can thus be maximized by filling the entire cavity volume with an ensemble of interacting dipoles. In this work this is achieved by inserting a highly doped semiconductor layer in a subwavelength plasmonic resonator. In our system the ultra-strong light–matter coupling occurs between a collective electronic excitation and the cavity photon. The measured coupling strength is 73% of the matter excitation energy, the highest ever reported for a light–matter coupled system at room temperature. We experimentally and theoretically demonstrate that such an ultra-strong interaction modifies the optical properties on a very wide spectral range (20–250 meV), and results in the appearance of a photonic gap of 38 meV, independently of the light polarization and angle of incidence. Light–matter ultra-strong coupling can thus be exploited to conceive metasurfaces with an engineered reflectivity band

    Photon correlations in the collective emission of hybrid gold-(CdSe/CdS/CdZnS) nanocrystal supraparticles

    Full text link
    We investigate the photon statistics of the light emitted by single self-assembled hybrid gold-CdSe/CdS/CdZnS colloidal nanocrystal supraparticles through the detailed analysis of the intensity autocorrelation function g(2)(τ)g^{(2)}(\tau). We first reveal that, despite the large number of nanocrystals involved in the supraparticle emission, antibunching can be observed. We then present a model based on non-coherent F\"orster energy transfer and Auger recombination that well captures photon antibunching. Finally, we demonstrate that some supraparticles exhibit a bunching effect at short time scales corresponding to coherent collective emission

    De la faille alpine à la fosse de Puysegur (Nouvelle-Zélande) : résultats de la campagne de cartographie multifaisceaux GEODYNZ-SUD, Leg 2

    Get PDF
    Le Leg 2 de la campagne GEODYNZ-SUD, menée au SW de la Nouvelle-Zélande, a permis de reconnaßtre les structures qui accompagnent du Nord au Sud le passage de la faille alpine à la subduction oblique sous la marge du Fiodland, puis à celle naissante, intra-océanique sous la ride de Macquarie. Au Nord et au-dessus de la plaque australienne subductée vers l'Est, un faisceau longitudinal de décrochements converge vers le systÚme transpressif de la faille alpine en découpant la marge continentale. Au Sud, la déformation décrochante est strictement localisée au sommet de la ride de Macquarie. (Résumé d'auteur

    Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    Get PDF
    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates [2], single-photon transistors [10], and efficient photonic cluster state generation [11]

    Photonic quantum state transfer between a cold atomic gas and a crystal

    Full text link
    Interfacing fundamentally different quantum systems is key to build future hybrid quantum networks. Such heterogeneous networks offer superior capabilities compared to their homogeneous counterparts as they merge individual advantages of disparate quantum nodes in a single network architecture. However, only very few investigations on optical hybrid-interconnections have been carried out due to the high fundamental and technological challenges, which involve e.g. wavelength and bandwidth matching of the interfacing photons. Here we report the first optical quantum interconnection between two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be faithfully transferred between a cold atomic ensemble and a rare-earth doped crystal via a single photon at telecommunication wavelength, using cascaded quantum frequency conversion. We first demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred onto the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85%85\%. Our results open prospects to optically connect quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks

    Highly nonlinear trion-polaritons in a monolayer semiconductor

    Get PDF
    Highly nonlinear optical materials with strong effective photon-photon interactions are required for ultrafast and quantum optical signal processing circuitry. Here we report strong Kerr-like nonlinearities by employing efficient optical transitions of charged excitons (trions) observed in semiconducting transition metal dichalcogenides (TMDCs). By hybridising trions in monolayer MoSe2 at low electron densities with a microcavity mode, we realise trion-polaritons exhibiting significant energy shifts at small photon fluxes due to phase space filling. We find the ratio of trion- to neutral exciton–polariton interaction strength is in the range from 10 to 100 in TMDC materials and that trion-polariton nonlinearity is comparable to that in other polariton systems. The results are in good agreement with a theory accounting for the composite nature of excitons and trions and deviation of their statistics from that of ideal bosons and fermions. Our findings open a way to scalable quantum optics applications with TMDCs
    • 

    corecore