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Abstract

Background: Plant-parasitic nematodes developed strategies to invade and colonize their host plants, including
expression of immune suppressors to overcome host defenses. Meloidogyne graminicola and M. incognita are root-knot
nematode (RKN) species reported to damage rice (Oryza sativa L) cultivated in upland and irrigated systems. Despite M.
incognita wide host range, study of the molecular plant - RKN interaction has been so far limited to a few dicotyledonous
model plants. The aim of this study was to investigate if the rice cv. Nipponbare widely used in rice genomic studies
could be used as a suitable monocotyledon host plant for studying M. incognita pathogenicity mechanisms. Here we
compared the ability of M. graminicola and M. incognita to develop and reproduce in Nipponbare roots. Next, we tested
if RKNs modulates rice immunity-related genes expression in galls during infection and express the Mi-crt gene encoding
an immune suppressor.

Results: Root galling, mature females, eggs and newly formed J2s nematodes were obtained for both species in rice
cultivated in hydroponic culture system after 4-5 weeks. Meloidogyne graminicola reproduced at higher rates than M.
incognita on Nipponbare and the timing of infection was shorter. In contrast, the infection characteristics compared by
histological analysis were similar for both nematode species. Giant cells formed from 2 days after infection (DAI) with M.
graminicola and from 6 DAl with M. incognita. Real-time PCR (qRT-PCR) data indicated that RKNs are able to suppress
transcription of immune regulators genes, such as OsEDST, OsPAD4 and OsWRKY13 in young galls. Four M. incognita
reference genes (Mi-eif-3, Mi-GDP-2, Mi-Y45F10D.4, and Mi-actin) were selected for normalizing nematode gene expression
studies in planta and in pre-parasitic J2s. Meloidogyne incognita expressed the immune suppressor calreticulin gene
(Mi-crt) in rice roots all along its infection cycle.

Conclusion: RKNs repress the transcription of key immune regulators in rice, likely in order to lower basal defence in
newly-formed galls. The calreticulin Mi-CRT can be one of the immune-modulator effectors secreted by M. incognita in
rice root tissues. Together, these data show that rice is a well suited model system to study host- M. incognita molecular
interactions in monocotyledons.
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Background

Root-knot nematodes (RKNs, Meloidogyne spp.) are one
of the most economically damaging genera of plant-
parasitic nematodes on horticultural and field crops in
all temperate and tropical areas (Trudgill and Blok
2001). In particular, crops important for tropical coun-
tries as coffee, cotton, cowpea, peanut, soybean and rice
are highly susceptible to RKNs, including M. incognita
(Kofoid and White 1919; Chitwood 1949), M. arenaria
(Neal 1889; Chitwood 1949), M. javanica (Treub 1885;
Chitwood 1949), and M. graminicola (Golden and
Birchfield 1968). Meloidogyne spp. are obligate plant par-
asites that settle in roots and complete their life cycle by
feeding from host cells (Williamson and Gleason 2003).
Like other plant and animal parasites, plant-parasitic
nematodes developed strategies to invade and colonize
their host plants, subvert the host machinery to their
own benefit and overcome host defenses (Haegeman
et al. 2012; Rosso et al. 2012; Mitchum et al. 2013).
Meloidogyne spp. (juveniles stage J2) usually enter the
plant through the apex and the root elongation zone,
and then migrate between plant cells to reach the young
central cylinder. Recent genomic data showed that M.
incognita and M. hapla (Chitwood, 1949) genomes con-
tain a high number of cell wall degrading enzymes, indi-
cating that the nematode may use a combination of
mechanical piercing and cell wall softening to enter and
migrate into roots (Abad et al. 2008; Opperman et al.
2008; Danchin et al. 2010). Once going into the differen-
tiating vascular tissues, juveniles become sedentary and
initiate nourishing feeding site originated from few par-
enchyma cells. Concomitantly, neighbouring cells divide
causing roots to form knots or swellings. It has been
shown that secretions from the nematode are crucial in
establishment of the nourishing feeding site within the
host root (Bellafiore and Briggs 2010; Rosso et al. 2012;
Mitchum et al. 2013). By secreting a number of com-
pounds (including effectors) into root cells, RKNs induce
their differentiation into hypertrophied, multinucleate
and metabolically active feeding cells, named giant cells
(GCs) (Kyndt et al. 2013). Feeding-site formation enables
the parasites to pump large amounts of nutrient solu-
tions from the plant’s vascular system. The nematode
then goes through two developmental stages (J3, J4) to
finally differentiate into an adult female which will lay
eggsand new juveniles arising from these eggs will, in
turn, start a new reproduction. Depending on the host
plant and environmental conditions, the cycle lasts 15—
45 days (Triantaphyllou and Hirschmann 1960; Perry
and Moens 2011). It is critical for the nematode to cope
with the host immune responses all along the infection
process. One strategy is most likely the release of
immune-modulatory effectors that block or interact with
the plant basal defense network (Bellafiore and Briggs,
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2010). A series of transcriptome analyses in Arabidopsis
and tomato have shown that, when a clear induction of
the cell primary metabolism is evident, the expression of
genes related to the plant immune responses are down-
regulated in galls during plant-nematode interactions
(Barcala et al. 2010; Caillaud et al. 2008b).

Until now, functional analysis of Meloidogyne spp. ef-
fectors has been essentially limited to M. incognita and
to a lower extent to M. javanica, having A. thaliana or
tomato as host plants. Meloidogyne incognita has a wide
host range encompassing several hundreds of wild and
cultivated plants. It is thus hypothesized that M. incog-
nita pathogenicity mechanisms are conserved across
plant genera, and even between dicotyledons and mono-
cotyledons (Bellafiore and Briggs 2010; Rosso et al.
2012). However, the functional characterization of M. in-
cognita effectors in other plant hosts, including monocot
species, has been poorly investigated. Among plant spe-
cies amenable to high-throughput genetic transform-
ation and analysis, rice (Oryza sativa) is well-suited as a
model monocot and is a crop species of high agronomic
value and a RKN host.

Meloidogyne species damage upland rice in Asia, West
Africa and Latin America with a prevalence of up to
50% (Bridge et al. 2005). Up to now, nearly all grown O.
sativa varieties tested are susceptible to Meloidogyne
spp. infection, even when differences in host response to
M. graminicola or M. incognita infection can be ob-
served (Diomandé 1984; Bridge et al. 2005; Prasad et al.
2006; de Aratjo-Filho et al,, 2010). Specific resistances
to Meloidogyne spp. were identified in the African relative
species like O. glaberrima (Diomandé 1984; Soriano et al.
1999) and progenies derived from inter-specific crosses are
currently being tested for nematode resistance.

The M. graminicola life cycle in rice roots was recently
investigated by histopathological analysis in several O.
sativa and O. glaberrima rice varieties (Cabasan et al.
2012). Analysis of the molecular rice responses to M. gra-
minicola infection showed that the hormone-mediated re-
sistance signaling pathways controlled by salicylic acid (SA),
jasmonic acid (JA) and ethylene (ET) are repressed soon
after infection by M. graminicola (Nahar et al. 2011).

In contrast, the rice - M. incognita interaction has
been poorly investigated until now and only little histo-
logical data was published (Ibrahim et al. 1973). How
the rice host plant copes with various RKN species has
been poorly investigated. Therefore, the aim of this study
was to investigate if rice could be used as a suitable host
plant for studying M. incognita pathogenicity mecha-
nisms and plant defense responses. Here we tested the
O. sativa cv. Nipponbare for M. incognita susceptibility,
and compared the ability of M. graminicola and M.
incognita to develop and reproduce in roots of this
rice cultivar. Next, we tested the hypothesis that the
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nematode modulates host defense responses in rice
plants. We show that M. incognita expressed the calre-
ticulin gene (Mi-crt) in infected rice roots and that sev-
eral rice defense genes expression are down-regulated
at an early stage of infection when the nematode starts
feeding from root cells. Together, these data show that rice
can provide an excellent model system to study host-M.
incognita molecular interactions in monocotyledons.

Results

Root galling and reproduction of M. incognita in O. sativa
cv. Nipponbare

Reproduction and life cycle duration

Root swellings resulting from one or multiple galls formed
within the rice root system were visible around 4 days after
inoculation (DAI), and egg-laying females were observed
from approximately 22 DAI, with a majority observed after
28 DAI (Figure 1K-L). Freshly hatched juveniles appeared
at 35 DAI and continued until 56 DAL M. incognita cycle
(J2 to J2) duration on rice cv. Nipponbare was thus esti-
mated to 35 days. Galls were initially formed at the root tips
of young plantlets and some infected roots stopped their
growth. After 35 DAI, galls were found either at root tips in
roots which stopped expanding or were distributed in roots
which took over expansion.

Histological analysis of rice roots nematode infection
Nematodes entered the roots, preferentially via the root
elongation zone migrating via the cortex to the root tip
and then migrating up into the vascular cylinder where
it induces feeding cells (Figure 1). At 2 DAI the obser-
vation of transverse sections of roots stained with tolui-
dine blue showed that the nematodes were protruded
out or were inside the stele (Figure 1A). Nematodes
migrated inter-cellularly and no sign of broken or nec-
rotic root cells was observed (Figure 1B). Along the path
of migrating nematodes cortical cells presented hyper-
trophy and asymmetrical shapes most likely induced by
the presence of the infecting nematode. No clear sign of
binucleate initiating giant cells were observed although
signs of feeding cell induction like condensed cytoplasm
could be infrequently seen.

At 4 DAL a number of nematodes were still migrating
and caused root swelling. Within the stele a number of
nematodes became sedentary and selected vascular par-
enchyma tissue containing xylem and phloem to induce
their feeding site. Acytokinetic nuclear division was then
observed in young feeding cells which presented a dense
cytoplasm, identified as newly induced GCs close to the
nematode head (Figure 1C,C’). Parenchymatic cells of
the vascular cylinder, neighboring giant cells (NCs) di-
vided, lost their typical rectangular shape and presented
irregular shapes encircling the giant-feeding cells. New
xylem and phloem elements also proliferated in the
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proximity of giant cells. These NCs showed a denser
cytoplasm and nuclei became more prominent when
closer to GCs (Figure 1C, and for 6 DAI, Figure 1D).

At 6 to 7 DA, the formation of several feeding sites
within the vascular system was observed and some ]2
were still found migrating within the stele. Cross sections
of galls showed GCs surrounded by dividing cells appar-
ently originated from the vascular cylinder as well as from
the root cortex. A number of cortical cells seemed to divide
asymmetrically (red arrow in Figure 1D). The induction of
lateral roots originating from pericycle cells was also visible
situated at the feeding site (Figure 1D). Multinucleation as
well as enlargement of GCs was observed at this stage
indicating that intense DNA replication was taking
place (Figure 1E, E’).

At 15 to 21 DAI (Figure 1F-Q), it could be evidenced
that most root swellings contained multiple nematode
feeding sites (NFS) (Figure 1G). Each NFS contained in
average 5 to 7 GCs. GCs appeared more frequently em-
bedded in the vascular cylinder, presented thickened cell
walls and contained a dense cytoplasm with a large
number of nuclei (per 10 pM section; Figure 1EF’).
Nematodes at this stage (15 to 21 DAI) varied between
parasitic ]2 and maturing females. Therefore, histological
observations at these time points suggest that nematodes
underwent molts (J2-J3-J4-young females). GCs at this
stage are mature, implying that nuclei division and en-
largement ended.

At 32 to 42 DAL a number of females started egg-
laying and due to their large size they were lost during
sectioning (Figure 1G-J). GCs devoid of cytoplasm
might be due to nematodes which stopped feeding
after reproduction or that died.

Root galling and reproduction of M. graminicola in Oryza
sativa cv. Nipponbare

Histological analysis of rice roots nematode infection
Meloidogyne graminicola penetrated rice roots via the
root elongation zone, downwards to the root meristem
and upwards to the vascular cylinder as observed for M.
incognita. Examination of roots at 1 DAI confirmed the
presence of nematodes in the cortex. Roots showed
swellings very early at 2 DAI and galls were obvious at 4
DAL Histological analysis showed that NES were visible
in swollen root tips from 2 DAI (Figure 2). They were
formed of 3—-4 young giant cells and located within the
vascular cylinder where phloem, xylem and neighboring
parenchymatic cells proliferated at the surroundings. At
4 to 7 DAI young GCs contained a dense cytoplasm,
presented several nuclei and thicked cell walls compared
to walls of vascular parenchyma cells (Figure 2). At
15 DAI giant cells presented multiple enlarged nuclei
(Figure 2). Cells in direct contact or very close by GCs
contained a dense cytoplasm. Often more than one NFS
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Figure 1 Cross- and longitudinal- sections (10 pum) of Nipponbare rice root infected by Meloidogyne incognita. A-B: 2 DAI; C-C": 4 DAI;
D: 6 DA, E-E": 7 DAI. (LRM: lateral root meristem; n: nematode; asterisk: giant cell). F-F": 15 DAI; G-H: 22 DAI; I: 35 DAI; J: 42 DAI; K-L: photographs
of a gall with females protruding from the root and egg masses induced by M. incognita. (n: nematode; asterisk: giant cell).
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Figure 2 Cross-sections (10 um) of Nipponbare rice roots infected by Meloidogyne graminicola obtained at 2, 7, 15, 22 and 31 days
after nematode infection (DAI). (n: nematode; asterisk: giant cell; em: egg masses).

J

was observed per root swelling. At 22 DAI mature galls
contained egg-laying females which remained embedded
in the root tissues exterior to the gall proper (Figure 2).
Around 31 DAI GCs were filled with cytoplasm and nu-
clei of various shapes often clustered. In some galls,
some GCs appeared degraded.

Reproduction and cycle duration

Stage 2 juveniles became parasitic around 4 to 7 DAI
and appeared swollen at this stage. At 15 DAI nematode
had undergone molts of J2 to J3 and J4 non-feeding fi-
nally reaching the female stage (7 to 15 DAI) and egg
laying adult females were observed from 18 to 22 DAL
Female bodies and egg masses were embedded within
the gall tissues (cortex). At 31 DAI, eggs laid by mature
females hatched and most likely infected roots within
the same plant.

Nematode genes expression in rice roots
A time course experiment with O. sativa cv Nipponbare
infected with M. incognita was applied to study the in
planta nematode gene expression. Swollen root tips and
galls located outlying from the root apex, were collected
at 6, 10 and 20 DAI and RNA was extracted. For each
time points, at least 35 plants were inoculated. The ex-
periment was repeated in triplicate.

Transcript accumulation of 5 genes (Mi-csq-1, Mi-eif-
3, Mi-GDP-2, Mi-Y45F10D.4, and Mi-actin) putatively
constitutively expressed in M. incognita was measured in

root samples collected at different times after infection.
In all three time-course experiments tested, the nema-
tode genes transcript levels increased in root samples all
along infection (Additional file 1: Table S1).

Figure 3 shows the averaged expression levels (as de-
fined by Cq values) of the 5 M. incognita genes here
analyzed in infected root tissues. On average, a 42-fold
(deltaCq =5.4) difference was found in the transcript

50
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0 z ‘ — ‘ ,
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Days after inoculation

Relative expression (fold change)

Figure 3 Relative expression average of M. incognita
constitutive genes in infested rice O. sativa cv. Nipponbare
roots. Gene expression was measured by reverse transcription-
quantitative polymerase chain reaction in plants infested with M.
incognita at different time points after treatment. Bars are the
mean values (+ standard error of the mean [SEM]) of Mi-csg-1,
Mi-eif-3, Mi-GDP-2, Mi-Y45F10D.4, and Mi-actin genes expression
data (Cq) in three independent biological replicates, with 35
plants per condition. (n=5; 3, each contained 35 plants pooled).
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accumulation between samples collected at the earliest
(6 DAI) and latest (20 DAI) time tested after inoculation
with M. incognita (Figure 3). Mi-actin transcript levels
were the most elevated in root samples as compared to
other genes tested (Additional file 1: Table S1) and ex-
hibited a 128-fold change accumulation during the time
course after infection. The stability of each M. incognita
gene expression across samples was analyzed using
RefFinder (Xie et al. 2012) in order to select the most re-
liable genes for using them as M. incognita reference
genes for qPCR gene expression analysis in rice tissues.
Except Mi-csq-1, all genes showed good stability across
samples (Additional file 2: Figure S1). The Mi-actin gene
showed the most stable expression pattern (lowest geo-
metric mean) and was used to further normalize Mi-crt
expression levels.

In parallel, the Os-actin transcripts were quantified to
verify the amount of rice transcripts in galls. When com-
pared to other rice reference genes, Os-actin showed
stable expression patterns in galls and roots of O. sativa
cv. Nipponbare plants (data not shown). Contrary to the
enhanced Mi-actin transcript accumulation, Os-actin
transcripts decreased during the infection course, mainly
after 10 DAI (an average difference of 2 cycles between
the 6- and 20-DAI samples) (Additional file 2: Figure
S2). These data suggest that nematode representation is
increasing in the biological material collected from in-
fected roots along the time-course tested. This is in ac-
cordance with the histological data showing that the
nematode body size dramatically increased inside galls.
These data then indicate that the RNA extraction pro-
cedure used for the mixed plant-nematode samples was
efficient for the purification of the total RNAs from both
organisms.

Expression of the M. incognita effector gene Mi-crt
was followed in root samples at 6, 10 and 20 DAL The
Mi-crt data were normalized to the Mi-actin data and
Mi-crt gene expression in infected-rice samples was fur-
ther calculated relative to the 6 DAI sample (Figure 4).
Mi-crt transcripts were as abundant as Mi-actin tran-
scripts, and accumulated at the three infection stages
tested. In addition, the Mi-crt expression data were not
found to significantly differ between 6 DAI, compared to
10 and 20 DAL as expected from Jaubert et al. (2005) in
M. incognita - A. thaliana interaction.

Rice defense genes expression

To study the rice defense responses against Meloidogyne
spp. root samples were collected from Nipponbare plants
inoculated with M. graminicola or M. incognita at 2 and 6
DAL, respectively. These time points correspond to the for-
mation of nutrient feeding sites observed in rice roots for
each nematode species, respectively. For each time point
chosen, a series of 90 plants were inoculated, and root
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samples were collected and pooled together. The experi-
ment was repeated in duplicate. Non-inoculated plants
served as control at the time of inoculation.

A series of genes involved in the rice immune responses
were selected, including those from signaling, salicylic acid
(SA)- and jasmonic acid (JA)-dependent resistance signal-
ing pathways (Delteil et al. 2010). We chose OsMAPKS,
OsMAPKS5a and OsMAPK20 for early signaling (phosphor-
ylation cascades in PTI and ETI), OsAOS2 (JA pathway),
OsEDSI and OsPAD4 (SA-dependent resistance), OsRACI
(oxidative burst), OsNIHI, and OsWRKY13 (positive tran-
scriptional regulators of defense genes). Gene expression
was normalized to the rice Os-actin used in Tao et al
(2009) and Delteil et al. (2011).

Analysis of gene expression in rice roots challenged
with Meloidogyne spp. showed that the majority of these
genes, except for NIHI that was induced two-fold at
this infection stage for M. incognita, were not induced
or down-regulated in the early time points after inoculation
(Figure 5) as compared with non-inoculated control plants.
This was particularly evident for OsEDS1, OsPAD4 and
OsWRKY13 genes tested that were down-regulated from
two- to three-fold at 2 DAI in M. graminicola and 6 DAI in
M. incognita.

Discussion

In this study, we showed that M. incognita is able to de-
velop and reproduce in O. sativa cv. Nipponbare. Root
galling, mature females, eggs and freshly hatched J2s
were obtained in hydroponic culture system after 4-5
weeks. Meloidogyne incognita is naturally found associ-
ated to rice in rainfed growing systems but the impact of
this RKN species on rice cultivation is lower than M.
graminicola that is remarkably well adapted to flooded
conditions (Fortuner and Merny, 1979; De Waele and
Elsen, 2007). In this study, we observed that M. gramini-
cola reproduced at higher rates than M. incognita on
Nipponbare and the timing of infection was shorter al-
though the infective behaviour and feeding site morph-
ologies were similar for both nematode species. Juveniles
penetrated the root elongation zone and tips, and estab-
lished in the stele where they induced the formation of
nutrient providing feeding sites. Giant cells were already
visible at 2 DAI with M. graminicola and only at 6 DAI
with M. incognita. These giant-feeding cells presented
walls that thickened during their development exhibiting
apparent cell wall ingrowths and interruptions indicative
to be plasmodesmata. Development of galls induced by
M. incognita as well as by M. graminicola in O. sativa
cv. Nipponbare involves hypertrophy of vascular paren-
chyma cells ending up in a small number of giant cells
per gall (up to 7). Concomitantly, hyperplasy is observed
in cells neighboring the giant-feeding cells and xylem
and phloem cells. A small number of cells around the
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gall proper also undergo to some extent hypertrophy. In
addition, other feeding sites form in the root vicinity
meaning that each root swelling may contain multiple
galls. Highnumber of feeding sites (or galls) is note-
worthy in each root swelling caused by M. graminicola
as recently reported by Cabasan et al. (2013). The pres-
ence of multiple galls suggests that during this suscep-
tible interaction hyperplasy might be further induced in
the root surrounding area. Therefore, it is tempting to
say that multiple gall formation might be facilitated by
the presence of neighboring galls. Otherwise, simply
multiple galls form close to each other because several
juvenile nematodes penetrate concurrently. A gall in-
duced by M. incognita in rice roots stays mostly con-
fined to the vascular cylinder whereas apparently galls
induced by M. graminicola involve a small number of
cells outside of the vascular tissue. This is in agreement
with galls induced in the dicotyledon model host, Arabi-
dopsis thaliana where galls are strictly confined to the
vascular tissue (de Almeida Engler et al., 1999). Galls in
Arabidopsis do not induce proliferation of endodermal
tissue layer, as revealed by lignin stain of galls delimited
the feeding site (de Almeida Engler, unpublished data).
Number of outer tissue layers of rice galls excluded from
the vascular cylinder at different root regions varies from
5 to around 10 cell layers, but this could simply reflect
the root region that the gall develops. Therefore, there it
is not yet clear that cells outside the vascular cylinder
are part of the gall induced by M. graminicola. Initial
phase of gall development shows giant cells which
undergo the first nuclear division accompanied by increase
in cytoplasm density. Concomitantly, parenchymatic cells
neighboring giant cells (NCs) divide and lose their typical
rectangular shape and become more rounded with various
shapes encircling the giant-feeding cells. These NCs show a
denser cytoplasm and nuclei become more prominent
when encircling giant cells, suggesting some kind of cellular
communication between giant cells and NCs. The presence
of plasmodesmata devoid of callose deposition has been
demonstrated for galls induced by root-knot nematodes in
Arabidopsis roots by Hofmann et al. (2010). The presence
of lateral root meristems in the gall region was also ob-
served during gall development suggesting local auxin
accumulation.

Once galls mature nematode developed into the clas-
sical J2-J3-J4-female phases and egg-laying females were
observed at 22 DAI with M. graminicola and at 32 DAI
with M. incognita. A conspicuous feature between both
Meloidogyne species was that M. incognita lays eggs out-
side of the roots whereas M. graminicola eggs remain
embedded within the root tissues, this latest explaining
why M. graminicola is a RKN species successful in in-
fecting rice grown in irrigated or flooded systems (Fortuner
and Merny, 1979; Prot and Matias, 1995; De Waele and
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Elsen, 2007). Meloidogyne graminicola female body size at
31 DAI was similar to the size of M. incognita females. Evi-
dently, egg laying within the root cortex by M. graminicola
is thus a specific adaptation for the aquatic survival and in-
fection ability. In addition, the fact that M. graminicola eggs
are kept within the roots while M. incognita eggs are ex-
truded out of the root tissue might represent an adaptation
to their hosts: to water submersed root systems, or to the
soil environment, respectively. Understanding the genetic
basis of this adaptation might therefore be a novel clue in
nematode parasitism knowledge in plants with submersed
roots versus soil grown root systems.

Importantly, data presented here indicate that both
RKN species are able to suppress rice basal defence
genes expression at early stages after infection. We
hypothesize that RKN repress the transcription of key
immune regulators in order to lower the basal defence.
This is in accordance with Nahar et al. (2011) and Ji
et al. (2013) who reported that rice cv Nipponbare
defense genes expression was repressed in roots and
giant cells early upon infection with M. graminicola.
Already at 1 DAL the mRNA levels of four immune-
related genes tested (OsWRKY45, OsPR1b, OsEin2b, and
JiOsPR10) were significantly attenuated in gall tissues
(Nahar et al,, 2011). Here we show that the same oc-
curred in rice galls infected by M. graminicola at 2 DAI,
or by M. incognita at 6 DAI, when the nematode had
started feeding and that first nutrient feeding sites have
been established (Figures 1 and 2). Eight genes involved
in the rice immune responses were tested, including
those from cell signaling, SA- and JA-dependent resist-
ance signaling pathways. When overexpressed in rice
plants, OsAOS2, OsRAC1, OsNIHI, OsWRKY13 genes
presented enhanced resistance levels to the fungus
Magnaporthe oryzae, causing rice blast disease and the
bacteria Xanthomonas oryzae pv. oryzae causing bacterial
blight (Delteil et al. 2010). EDS1 (Enhanced Disease Suscep-
tibility 1) and PAD4 (Phytoalexin Deficient 4) play a key
role in A. thaliana R-protein-triggered and basal resistance
to invasive biotrophic and hemi-biotrophic pathogens (Falk
et al. 1999; Jirage et al. 1999). EDS1 and PAD4 are intracel-
lular proteins homolog to lipases that can interact and form
different protein complexes. In response to infection, EDS1
and PAD4 activate SA production and signaling, and also
mediate antagonism between the JA and ET defense re-
sponse pathways (Rietz et al. 2011; Wiermer et al. 2005). In
the same way, OsWRKY13 serves as a node of the antagon-
istic crosstalk between SA- and JA-dependent pathways in
pathogen-induced defense responses. There are more than
100 WRKY transcription factors in the rice genome (Wu
et al. 2005), and many are involved in rice innate immune
responses, including OsWRKY03, OsWRKY71, OsWRKY13,
OsWRKY45 (Qiu et al. 2009; Liu et al. 2013). OsWRKY13
mediates disease resistance to bacterial blight and fungal
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1,2

mExp.1

WExp. 2
WExp.3

6 DA 10DAI 20DAI

Figure 4 Relative expression of the Mi-crt gene in M.
incognita-infested rice O. sativa cv. Nipponbare roots after 6,
10, and 20 dai. Gene expression was measured by reverse
transcription-quantitative polymerase chain reaction in plants
infested with M. incognita at different time points after treatment.
The Mi-crt data were normalized to the Mi-actin data and Mi-crt
gene expression in infected-rice samples was further calculated
relative to the 6 DAl sample. Data presented are means (+ standard error
of the mean [SEM]) expression in three independent biological replicates,
with 35 plants per condition (n=3, each contained 35 plants pooled).

blast through activation of SA-dependent pathways and
suppression of JA -dependent pathways (Qiu et al. 2009).
The present study strongly suggests that successful M. in-
cognita or M. graminicola attack suppresses SA signaling in
rice, as revealed by the down-regulation of OsEDSI,
OsPAD4 and OsWRKY13 genes in newly-formed galls. This
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result is in accordance with Nahar et al. (2011) who ob-
served down-regulation of genes involved in SA/JA/ET
signaling in rice cv. Nipponbare challenged with M. grami-
nicola. However, rice plants impaired in SA biosynthesis
(expressing the Pseudomonas putida salicylate hydroxylase
NahG gene) were only slightly more susceptible to nema-
tode infection, pointing to a positive but minor role for SA
in rice defense against Meloidogyne. In tomato, NahG
plants that still produce minimal amounts of SA did not
show increased susceptibility to Meloidogyne indicating that
low levels of SA might be sufficient for basal resistance to
root-knot nematodes (Bhattarai et al. 2008). In addition,
successful development of Meloidogyne in tomato roots in-
volves the repression of pathogenesis-related (PR) genes as-
sociated to SA-dependent systemic acquired resistance
(SAR) (Molinari et al. 2013). Conversely, the JA/ET signal-
ling pathway seems to play a major role in basal defense to
nematodes (Bhattarai et al. 2008; Nahar et al. 2011). When
exogenous ethephon and methyl jasmonate were supplied
to rice plants, M. graminicola was less effective in counter-
acting root defense pathways. Here, the OsAOS2 gene,
which codes the first enzyme for JA biosynthesis pathway,
was not induced in response to nematode infection at the
time studied. This suggests that the plant did not perceive
nematode attack or that proper signalisation was impaired.
Mitogen-activated protein kinase (MAPK) cascades
are activated in plants during responses to pathogens
and mediate intracellular stress responses, including

-

MAPK6 | MAPK5a | MAPK20 | RAC1 AOS2

signaling oxidative JA
burst |synthesis

M. incognita

W Exp.1

EDS1 | PAD4 | NIH1 |wRky13| MExp.2

SA-dependent transcription
responses

— -

-1.5
-2 - MAPK6 | MAPK5a | MAPK20 | RAC1 AOS2
-2.5
_3 N
-3.5
signaling oxidative JA
burst |synthesis

M. graminicola

M Exp.1

EDS1 PAD4 NIH1 |wrky13| ™Exp.2

SA-dependent transcription
responses

Figure 5 Early regulation of defense-related genes in O. sativa cv. Nipponbare roots during Meloidogyne infection. Gene expression was
measured by reverse transcription-quantitative polymerase chain reaction in plants infested with M. graminicola at 2 DAI or with M. incognita at
6 DAI. Gene expression was normalized to Os-actin. Bars represent the log2 values of the ratio of the mean transcript levels for inoculated vs.
non-inoculated plants from two technical replicates. Two independent biological replicates were carried out, with 90 plants per condition.
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reactive oxygen species (ROS) production, cell death,
and activation of PR gene expression. The OsMAPK6
cascade plays an important role in both pathogen-
associated molecular pattern (PAMP)-triggered immun-
ity (PTI) and effector-triggered immunity (ETI) in rice
(Liu et al. 2013). OsMAPK6, OsMAPKS5a and the rice
small GTPase OsRacl act together to regulate plant
defense responses to pathogens or to pathogen-derived
elicitor signaling in rice (Lieberherr et al. 2005; Liu et al.
2013). In this study, OsMAPK5a was down-regulated in
rice galls, and more specifically in response to M. incog-
nita infection. Recently, OsMAPKS was shown to nega-
tively modulate PR genes expression in rice, such as
PRI and PRI0 (Xiong and Yang 2003; Seo et al. 2011).
When OsMAPKSa is knocked-down in rice, plants ap-
pear more resistant to fungal (M. oryzea) and bacterial
(Burkholderia glumae) pathogens (Xiong and Yang,
2003). However, OsMAPKSa transcription has been re-
ported to be activated in response to M. oryzae (for both
virulent and avirulent isolates) few hours after inoculation,
but it is further down-regulated until 3 DAI (Delteil et al.
2012). Here it is thus not clear whether OsMAPKS5a would
also act as a negative regulator of rice defense responses
to nematodes.

It is now known that the local suppression of host
defense signaling observed after nematode infection is
the result of virulence effectors secreted into the host
plant to facilitate infection (Haegeman et al. 2012;
Mitchum et al. 2013). Meloidogyne spp. potentially se-
crete hundreds of proteins in its host (Bellafiore et al.
2008). In this study, we showed that M. incognita
expressed the calreticulin Mi-CRT gene all along its
infection cycle in Nipponbare roots. In A. thaliana,
Mi-CRT is secreted in planta throughout parasitism
(Jaubert et al. 2005) and plays a role as immune-
modulator in the suppression of plant basal defenses
(Jaouannet et al. 2013). It is thus expected that Mi-CRT
play a similar role in interfering with the plant immune
system PTI in distantly related hosts. Calreticulins are
highly conserved calcium-binding proteins in plants and
animals that act as Ca®* - binding chaperones, regulating
Ca®* storage and signalling in the cell. But, how Mi-CRT
contributes to the infection process of the nematode re-
mains unknown and should be further investigated in
particular during rice infection.

Conclusions

Our data demonstrate that the M. incognita-rice patho-
system may be a novel additional model system to
dissect the complex cellular and molecular nematode in-
teractions with monocotyledonous host plants. A benefit
of the Meloidogyne-rice pathosystem over other plant-
nematode models is the specific resistance identified in
the African relative species O. glaberrima (Soriano et al.
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1999). The rice, O. sativa and O. glaberrima — Meloido-
gyne spp. interactions thus may serve as a model to
understand compatible and incompatible plant- nema-
tode interactions respectively and to elucidate the mo-
lecular mechanisms developed by these parasites to
infect their monocotyledonous host plants.

Methods

Biological material

Meloidogyne incognita isolate 1 (race 1, USA; Li et al.
2007) was propagated from greenhouse-grown tomato
plants (Solanum lycopersicum L. cv. Naine). Second-
stage juvenile (J2) nematodes were hatched from steril-
ized eggs as described (Bellafiore et al. 2008). Eggs were
hatched at room temperature for 5 days, and J2 worms
were allowed to crawl through six Kimwipe tissue layers
in water with 100 mg/] streptomycin. The population of
M. graminicola used in all experiments was originally
collected from Laurel (Batangas, Philippines) and cul-
tured on Oryza sativa cv. IR64. Eggs were extracted
from infected roots by shaking M. graminicola-infected
roots in bleach 0.7% for 5 min and mixing them in a
“blender” for 5 times during 1s. Eggs were collected onto
a 25 pm mesh and were hatched at room temperature.
Only J2 nematode populations collected after a max-
imum of 96 h were used as inoculums.

Nematode inoculation assays on rice plants

Oryza sativa subsp. japonica cv. Nipponbare seeds were
germinated on sand wetted with Hoagland % solution
for 7 days and then transferred to tubes containing 10 g
SAP substrate (Reversat et al. 1999) wetted with Hoag-
land % solution (KNO3; 5 mM; KH,PO, 1 mM; Ca(NO;),
5 mM; MgSO, 2 mM; 25 mg iron; trace element). Rice
plants were maintained in a growth chamber under con-
trolled conditions at 26°C/24°C day/night temperature,
under a 14 h day’10 h night light regime (60 umol m > s~
illumination) and 78% relative humidity. Three days after
transplanting into SAP (Sand and Absorbent Polymer)
substrate (Reversat et al. 1999), the plants were inocu-
lated with 1 ml water containing 400 freshly hatched
stage J2 juveniles of M. graminicola or M. incognita.
One day after inoculation (DAI) rice plants were transferred
to a 15 ml hydroponic culture system with Hoagland %
solution (Reversat et al. 1999) to synchronize the infection
process.

Histopathology study

Infected roots were harvested at 1, 2, 4, 7, 15, 22, 31, 35
and 42 DAI, carefully washed and immediately placed in
freshly prepared fixative (2% paraformaldehyde — 1%
glutaraldehyde — 1% cafein (Sigma-Aldrich) in 0.5 x
phosphate buffer (Sigma-Aldrich). Root tips (1 cm seg-
ment) or when visible, galls were excised from each
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Table 1 Primers used for reverse transcription-quantitative polymerase chain reaction gene expression studies

Name Gene Forward Reverse primer

MI-CRT (calreticulin) GenBank: AAL40720 GGCTCTGTTGGTATTGACATC CTTGCGTTCTTCCTCATCTGC
Mi-actin Minc06769* GCTTTGCTATGTTGCTTTGG TGTAAGAAGTCTCGTGAATACC
Mi-csg-1 Minc11275* TGATTATTTACAGGAAATGTTTGG TAGGGTCGTCTAAATTTAATTGG
Mi-eif-3C Minc06181* AAATTCTTTCGTAGTGCTGTTTC AAATCTTGTCGTCCTAATGGC
Mi-gpd-2 Minc12412a* AAGCCGTTCTTTCTTTGTATG AAGCATAACCTTCATAGATTGG
Mi-Y45F10D.4 Minc08763* CAAAGATGATCCCACAATAGG AAAGTTTTGAATTTGGCATCG
Os-actin (actin-1) RAP-DB: 0s03g0718100 CTCTCAGCACATTCCAGCAG AGGAGGACGGCGATAACAG
OsAOS2 RAP-DB: 0s03t0225900 GCGAGAGACGGAGAACCC CGACGAGCAACAGCCTTC
OsMAPK6 RAP-DB: 0s06g0154500 GATACATTCGCCAACTTCC CAGTGATGCCAGGTAAGG
OsMPAK5a RAP-DB: 0s03g17700 GTCTGCTCCGTGATGAAC TGATGCCTATGATGTTCTCG
OsMPAK20 RAP-DB: Os01t0629900 TCAACTCCAATTCCTGCCAAG AACAACTCTTCCTGGTCTTGC
OsNHT (NPR1) RAP-DB: 0s01t0194300 AGAAGTCATTGCCTCCAG ACATCGTCAGAGTCAAGG
OsRACT RAP-DB: 0s01t0229400 GCTTCTTCCATAATAACAACG AGTTTCTTTCTGGTTACATCC
OsEDS1 RAP-DB: 0s09t0392100 CAGGAGAGGCAGTGTTAATCAG GCAAGCGGAGTAAGTGGTATG
OsPAD4 RAP-DB: Os11t0195500 TCAGAGGCAAGGCAGTAGTG ACCGCTCACGCAGGATAG
OsWRKY13 RAP-DB: Os01t0750100 GCCAGCGGAGAACGAATC CTCCTCCTGCTTCACAACC

*http://wwweé.inra.fr/meloidogyne_incognita.

plant, fixed for 15 h in PFA, dehydrated for 1 h in each
ethanol dilution (once 50% and twice 70% vol/vol) and
embedded in the epoxy resin Technovit 7100 (Kulzer
Friedrichsdorf, Germany) according to Pegard et al.
(2005). Blocks containing galls of different time points
were sectioned (10 um), mounted in 90% glycerol and
microscopically observed under UV light (UV filter set
A2, Zeiss AXIO Imager). The same sections were subse-
quently stained (3 min at room temperature) with 0.05%
toluidine blue in 0.1 M sodium phosphate buffer, pH 5.5.
Images were taken with an Axiocam digital camera
(Leica microscope) with standard bright-field optics.

RNA extraction and cDNA synthesis

Root tips were excised from infected and non-infected
rice plantlets, immediately frozen in liquid nitrogen and
kept at —80°C until use. Total RNA was extracted from
rice root samples using the RNeasy Plant kit (Qiagen,
France), with addition of an on-column DNase I diges-
tion. For quantification, the absorbance from 1 uL. RNA
samples were measured using the NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies), and 1%
agarose gel was run to visualize the quality of the RNA.
First-strand ¢cDNAs were synthesized from 1 pg of total
RNA in 20 ul final volume, using Omniscript RT kit
(Qiagen) and oligo-dT(18)-MN primer (Eurogentec,
Angers, France) following the manufacturer’s instructions.

Reference genes selection in M. incognita
Candidate reference genes of M. incognita to normalize
RT-qPCR studies were selected based on a study on the

model nematode Caenorhabditis elegans (Hoogewijs et al.
2008). The M. incognita ortholog genes were searched in
the genome (http://wwwé.inra.fr/meloidogyne_incognita),
and specific primers were designed for RT-qPCR. Only the
primers designed for Mi-csq-1, Mi-eif-3C, Mi-gpd-2, Mi-
Y45F10D.4, and Mi-actin genes displayed correct amplifica-
tion efficiency and specificity. Transcript accumulation of
candidate genes was detected in rice roots after infection
with M. incognita. The stability of each M. incognita gene
expression during rice infection was analyzed using RefFin-
der (Xie et al. 2012; http://www.leonxie.com/referencegene.
php) and the most reliable gene was selected to normalise
RT-qPCR data on M. incognita gene expression analysis in
rice tissues.

Primer design and selection

Specific primers were designed from the O. sativa or M.
incognita cDNA sequences using the Beacon Designer
5.0 software (Premier Biosoft International, Palo Alto,
CA, USA), with melting temperatures (Tm) of 58 + 5°C,
primers lengths of 18 to 25 bp, and amplicon lengths of
75 to 200 bp. Primers were designed from the 3" region
of the gene to ensure gene specificity. For each primer
pair, a preliminary real-time assay was performed on O.
sativa or M. incognita pure and mixed cDNAs samples
to evaluate the amplification of non-specific products
or primer dimmer artefacts. The primer efficiency was
experimentally tested with the LinRegPCR programme
developed by Ramakers et al. (2003) which uses a linear
regression analysis of fluorescence data from the exponen-
tial phase of PCR amplification to determine amplification
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efficiency (E). The specificity of PCR products was checked
by melting curve analyses and only primers sets producing
a single sequence-specific peak in the dissociation curve
were used.

Real-time quantitative PCR assays of gene expression
Primers listed in Table 1 were synthesized by Eurogentec
and used at 200 nM final concentration. Quantitative
RT-PCR was performed using the Stratagene MX3005P
with MxPro v 3.00 software for Comparative Quantitation
(Stratagene, La Jolla, CA). Quantitative PCR was carried
out on 1.25 ng ¢cDNA in a 15 pL amplification mixture con-
taining MESA BLUE Master Mix Plus for SYBR Assay low
ROX (Eurogentec, Belgium). The cycling conditions com-
prised 10 min polymerase activation at 95°C followed by 40
cycles at 95°C for 15 sec, 55°C for 20 sec and 72°C for 40
sec. Following cycling, the melting curve was determined in
the range 55°-95°C, with a temperature slope of 0.01°C/sec.
Each assay was conducted in duplicates and included a no-
template control.

Baseline and threshold values were automatically deter-
mined for all plates and genes using the MxPro software
ver. 4.1.0.0 (Stratagene). In order to ensure comparability
between data obtained from different genes, in each run all
samples were in a same plate.

Data analysis

Analysis of RT-qPCR fluorescence data with LinRegPCR
determined E values for each reaction. Individual Cq
values were considered as valid only if the amplification
parameters passed all quality checks. For the relative
gene expression in rice and nematode samples, data
were analyzed using the MxPro software package to ob-
tain the relative expression levels of rice genes. For each
sample, the mean Cq value was calculated based on Cq
values of both replicates. Mi-crt gene expression was
normalized to the Mi-actin gene (Table 1). Os-genes ex-
pression was normalized to the Os-actin gene (Table 1).
Based on the comparative Ct method, data are either
expressed as fold changes to calibrator average or as log
(base 2) fold changes to calibrator average.

Additional files

Additional file 1: Table S1. Meloidogyne incognita gene expression in
infested rice Oryza sativa cv. Nipponbare roots and juvenile stage 2 (J2)
sample.

Additional file 2: Figure S1. Geomean of ranking values of genes
reference used. Transcript accumulation of candidate genes was detected
in rice roots after infection with M. incognita. The stability of each M.
incognita gene expression during rice infection was analyzed using
RefFinder (Xie et al. 2012; http://www.leonxie.com/referencegene.php).
Figure S2. Relative expression of the Os-actin gene in M. incognita-
infested rice O. sativa cv. Nipponbare roots. Gene expression was
measured by reverse transcription-quantitative polymerase chain reaction
in plants infested with M. incognita at different time points after
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treatment. Data presented are mean values of two technical replicates.
Three independent biological replicates were carried out, with 35 plants
per condition (n = 3, each contained 35 plants pooled).
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