4,826 research outputs found

    Depositional architecture of a mixed travertine-terrigenous system in a fault-controlled continental extensional basin (Messinian, Southern Tuscany, Central Italy)

    Get PDF
    The extensional Neogene Albegna Basin (Southern Tuscany, Italy) includes several thermogene travertine units dating from the Miocene to Holocene time. During the late Miocene (Messinian), a continental fault-controlled basin (of nearly 500-km2 width) was filled by precipitated travertine and detrital terrigenous strata, characterized by a wedge-shaped geometry that thinned northward, with a maximum thickness of nearly 70m. This mixed travertine-terrigenous succession was investigated in terms of lithofacies types, depositional environment and architecture and the variety of precipitated travertine fabrics. Deposited as beds with thickness ranging from centimetres to a few decimetres, carbonates include nine travertine facies types: F1) clotted peloidal micrite and microsparite boundstone, F2) raft rudstone/floatstone, F3) sub-rounded radial coated grain grainstone, F4) coated gas bubble boundstone, F5) crystalline dendrite cementstone, F6) laminated boundstone, F7) coated reed boundstone and rudstone, F8) peloidal skeletal grainstone and F9) calci-mudstone and microsparstone. Beds of terrigenous deposits with thickness varying from a decimetre to > 10 m include five lithofacies: F10) breccia, F11) conglomerate, F12) massive sandstone, F13) laminated sandstone and F14) claystone. The succession recorded the following three phases of evolution of the depositional setting: 1) At the base, a northward-thinning thermogene travertine terraced slope (Phase I, travertine slope lithofacies association, F1-F6) developed close to the extensional fault system, placed southward with respect to the travertine deposition. 2) In Phase II, the accumulation of travertines was interrupted by the deposition of colluvial fan deposits with a thickness of several metres (colluvial fan lithofacies association, F10 and F12), which consisted of massive breccias, adjacent to the alluvial plain lithofacies association (F11-F14) including massive claystone and sandstone and channelized conglomerates. Travertine lenses, of 2-3-m thickness, appeared intermittently alternating with the colluvial fan breccias. 3) In the third phase, the filled fault-controlled basin evolved into an alluvial plain with ponds rich in coated reed travertines, which record the influence of freshwater (travertine flat lithofacies association, F7-F9). This study shows the stratigraphic architecture and sedimentary evolution of a continental succession, wherein the hydrothermal activity and consequent travertine precipitation were driven by the extensional tectonic regime, with faults acting as fluid paths for the thermal water. Fault activity created the accommodation space for travertine and colluvial fan accumulation. Erosion of the uplifted footwall blocks provided the source of sediments for the colluvial fan breccias, which alternated with the thermogene travertine precipitation. Climatic oscillations might have led to the recharge of the aquifer that fed the hydrothermal vents. The studied continental succession in an extensional basin provides valuable information about the interplay between thermogene travertine and alluvial/colluvial deposition, which in turn might improve the understanding of similar fault-controlled continental depositional systems in outcrops and the subsurface

    On a probabilistic model for martensitic avalanches incorporating mechanical compatibility

    Get PDF
    Building on the work by Ball et al (2015 MATEC Web of Conf. 33 02008), Cesana and Hambly (2018 A probabilistic model for interfaces in a martensitic phase transition arXiv:1810.04380), Torrents et al (2017 Phys. Rev. E 95 013001), in this article we propose and study a simple, geometrically constrained, probabilistic algorithm geared towards capturing some aspects of the nucleation in shape-memory alloys. As a main novelty with respect to the algorithms by Ball et al (2015 MATEC Web of Conf. 33 02008), Cesana and Hambly (2018 A probabilistic model for interfaces in a martensitic phase transition arXiv:1810.04380), Torrents et al (2017 Phys. Rev. E 95 013001) we include mechanical compatibility. The mechanical compatibility here is guaranteed by using convex integration building blocks in the nucleation steps. We analytically investigate the algorithm's convergence and the solutions' regularity, viewing the latter as a measure for the fractality of the resulting microstructure. We complement our analysis with a numerical implementation of the scheme and compare it to the numerical results by Ball et al (2015 MATEC Web of Conf. 33 02008), Cesana and Hambly (2018 A probabilistic model for interfaces in a martensitic phase transition arXiv:1810.04380), Torrents et al (2017 Phys. Rev. E 95 013001)

    Exact Constructions in the (Non-linear) Planar Theory of Elasticity: From Elastic Crystals to Nematic Elastomers

    Get PDF
    In this article we deduce necessary and sufficient conditions for the presence of “Conti-type”, highly symmetric, exactly stress-free constructions in the geometrically non-linear, planar n-well problem, generalising results of Conti et al. (Proc R Soc A 73(2203):20170235, 2017). Passing to the limit nn\rightarrow\infty, this allows us to treat solid crystals and nematic elastomer differential inclusions simultaneously. In particular, we recover and generalise (non-linear) planar tripole star type deformations which were experimentally observed in Kitano and Kifune (Ultramicroscopy 39(1–4):279–286, 1991), Manolikas and Amelinckx (Physica Status Solidi (A) 60(2):607–617, 1980; Physica Status Solidi (A) 61(1):179–188, 1980). Furthermore, we discuss the corresponding geometrically linearised problem

    Using instruments in the study of animate beings:Della Porta’s and Bacon’s experiments with plants

    Get PDF
    In this paper, I explain Francis Bacon's use of plants as philosophical instruments in the context of his Historia vitae et mortis. My main claim is that Bacon experimented with plants in order to obtain knowledge about the hidden processes of nature, knowledge that could be transferred to the human case and used for the prolongation of life. Bacon's experiments were based on Giambattista della Porta's reports from the Magia naturalis, but I show how a different metaphysics and research method made Bacon systematically rework, reconceptualise, and put to divergent uses the results of the same experimental reports

    The influence of petrography, mineralogy and chemistry on burnability and reactivity of quicklime produced in Twin Shaft Regenerative (TSR) kilns from Neoarchean limestone (Transvaal Supergroup, South Africa)

    Get PDF
    This study evaluates the influence of chemical, mineralogical and petrographic features of the Neoarchean limestone from the Ouplaas Mine (Griqualand West, South Africa) on its burnability and quicklime reactivity, considering the main use as raw material for high-grade lime production in twin shaft regenerative (TSR) kilns. This limestone consists of laminated clotted peloidal micrite and fenestrate microbial boundstone with herringbone calcite and organic carbon (kerogen) within stylolites. Diagenetic modifications include hypidiotopic dolomite, micrite to microsparite recrystallization, stylolites, poikilotopic calcite, chert and saddle dolomite replacements. Burning and technical tests widely attest that the Neoarchean limestone is sensitive to high temperature, showing an unusual and drastically pronounced sintering or overburning tendency. The slaking reactivity, according to EN 459-2 is high for lime burnt at 1050 A degrees C, but rapidly decreases for lime burnt at 1150 A degrees C. The predominant micritic microbial textures, coupled with the organic carbon, are key-factors influencing the low burnability and the high sintering tendency. The presence of burial cementation, especially poikilotopic calcite, seems to promote higher burnability, either in terms of starting calcination temperature, or in terms of higher carbonate dissociation rate. In fact, the highest calcination velocity determined by thermal analysis is consistent with the highest slaking reactivity of the lower stratum of the quarry, enriched in poikilotopic calcite. Secondly, locally concentered dolomitic marly limestones, and sporadic back shales negatively affects the quicklime reactivity, as well. This study confirms that a multidisciplinary analytical approach is essential for selecting the best raw mix for achieving the highest lime reactivity in TSR kilns

    Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: A critical systematic review

    Get PDF
    Background and purpose: Neuropathological studies can elucidate the mechanisms of nervous system damage associated with SARS-CoV-2 infection. Despite literature on this topic is rapidly expanding, correlations between neurological symptoms and brain pathology findings in COVID-19 patients remain largely unknown. Methods: We performed a systematic literature review on neuropathological studies in COVID-19, including 438 patients from 45 articles published by April 22, 2021. We retrieved quantitative data regarding demographic, clinical, and neuropathological findings. We carried out a Wilcoxon rank sum test or χ2 test to compare patients' subgroups based on different clinical and brain pathology features. Results: Neuropathological findings in COVID-19 patients were microgliosis (52.5%), astrogliosis (45.6%), inflammatory infiltrates (44.0%), hypoxic-ischemic lesions (40.8%), edema (25.3%), and hemorrhagic lesions (20.5%). SARS-CoV-2 RNA and proteins were identified in brain specimens of 41.9% and 28.3% of subjects, respectively. Detailed clinical information was available from 245 patients (55.9%), and among them, 96 subjects (39.2%) had presented with neurological symptoms in association with typical COVID-19 manifestations. We found that: (i) the detection rate of SARS-CoV-2 RNA and proteins in brain specimens did not differ between patients with versus those without neurological symptoms; (ii) brain edema, hypoxic-ischemic lesions, and inflammatory infiltrates were more frequent in subjects with neurological impairment; (iii) neurological symptoms were more common among older individuals. Conclusions: Our systematic revision of clinical correlates in COVID-19 highlights the pathogenic relevance of brain inflammatory reaction and hypoxic-ischemic damage rather than neuronal viral load. This analysis indicates that a more focused study design is needed, especially in the perspective of potential therapeutic trials

    Depositional architecture, facies character and geochemical signature of the Tivoli travertines (pleistocene, acque albule basin, central Italy)

    Get PDF
    Facies character, diagenesis, geochemical signature, porosity, permeability, and geometry of the upper Pleistocene Tivoli travertines were investigated integrating information from six borehole cores, drilled along a 3 km N-S transect, and quarry faces, in order to propose a revised depositional model. Travertines overlie lacustrine and alluvial plain marls, siltstones, sandstones and pyroclastic deposits from the Roman volcanic districts. In the northern proximal area, with respect to the inferred hydrothermal vents, travertines accumulated in gently-dipping, decametre-scale shallow pools of low-angle terraced slopes. The intermediate depositional zone, 2 km southward, consisted of smooth and terraced slopes dipping S and E. In the southernmost distal zone, travertine marshes dominated by coated vegetation and Charophytes interfingered with lacustrine siltstones and fluvial sandstones and conglomerates. Travertine carbon and oxygen stable isotope data confirm the geothermal origin of the precipitating spring water. The travertine succession is marked by numerous intraclastic/extraclastic wackestone to rudstone beds indicative of non-deposition and erosion during subaerial exposure, due to temporary interruption of the vent activity or deviation of the thermal water flow. These unconformities identify nine superimposed travertine units characterized by aggradation in the proximal zone and southward progradation in the intermediate to distal zones. The wedge geometry of the travertine system reflects the vertical and lateral superimposition of individual fan-shaped units in response to changes in the vent location, shifting through time to lower elevations southward. The complexity of the travertine architecture results from the intermittent activity of the vents, their locations, the topographic gradient, thermal water flow paths and the rates and modes of carbonate precipitation
    corecore