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Abstract 

This study evaluates the influence of chemical, mineralogical and petrographic features of the Neoarchean 

limestone from the Ouplaas Mine (Griqualand West, South Africa) on its burnability and quicklime reactivity, 

considering the main use as raw material for high-grade lime production in twin shaft regenerative (TSR) kilns. 

This limestone consists of laminated clotted peloidal micrite and fenestrate microbial boundstone with 

herringbone calcite and organic carbon (kerogen) within stylolites. Diagenetic modifications include hypidiotopic 

dolomite, micrite to microsparite recrystallization, stylolites, poikilotopic calcite, chert and saddle dolomite 

replacements. Burning and technical tests widely attest that the Neoarchean limestone is sensitive to high 

temperature, showing an unusual and drastically pronounced sintering or overburning tendency. The slaking 

reactivity, according to EN 459-2 is high for lime burnt at 1050 °C, but rapidly decreases for lime burnt at 1150 

°C. The predominant micritic microbial textures, coupled with the organic carbon, are key-factors influencing 

the low burnability and the high sintering tendency. The presence of burial cementation, especially poikilotopic 

calcite, seems to promote higher burnability, either in terms of starting calcination temperature, or in terms of 

higher carbonate dissociation rate. In fact, the highest calcination velocity determined by thermal analysis is 

consistent with the highest slaking reactivity of the lower stratum of the quarry, enriched in poikilotopic calcite. 

Secondly, locally concentered dolomitic marly limestones, and sporadic back shales negatively affects the 

quicklime reactivity, as well. This study confirms that a multidisciplinary analytical approach is essential for 

selecting the best raw mix for achieving the highest lime reactivity in TSR kilns. 

 

Introduction 

This research investigates the influence of texture, microstructure, mineralogy, and bulk rock chemistry of 

Neoarchean limestone (Transvaal Supergroup, South Africa) on its thermal behavior and burnability for the 

production of industrial high reactive quicklime. The traditional calcination models for rotary and vertical shaft 

kilns (Boynton 1980; Cheng and Specht 2006) have recently been revisited. These revised calcination processes 

take into account not only the carbonate chemistry and mineralogy (Marinoni et al. 2012), but also the effect of 

the limestone microfacies and microstructure, resulting from depositional processes and early to late diagenetic 

modifications (Moropoulou et al. 2001; Kiliç and Mesut 2006; Hughes and Corrigan 2009;  
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Vola and Sarandrea 2013; Marinoni et al. 2015). Studies onVol.:(0123456789

 

◂Fig. 1  a-b Location of the investigated Ouplass Mine. c Simplified stratigraphic columns for a portion of the Transvaal 

Supergroup of the Kaapvaal Craton in the Griqualand West Basin, according to Beukes (1980) and SACS (1980) (modified 

after Altermann and Schopf 1995). d Landscape photograph of bench 4P and 4S of the Ouplass Mine. e Simplified 

geological map of the Kaapvaal Craton, showing the Late Archean Transvaal Supergroup, broadly divided into two 

structural sub-basins. The inset contains a detailed close-up map of the stratigraphic units in Griqualand West, South 

Africa (modified after Paris et al. 2014) 



 

mud-supported and grain-supported limestones from Egypt (Soltan 2009; Soltan et al. 2011, 2012) and the United Arab 

Emirates (Alaabed et al. 2014) demonstrated the impact of different microfacies types and their related open porosity, 

on the quality of the high-calcium lime, as well as, other compositional and process parameters. The limestone 

microstructure plays a key role in controlling the calcination activation energy (Soltan and Serry 2011; Marinoni et al. 

2015). Other recent and important studies treat the influence of mineralogy, petrography and microstructure on the 

thermal decomposition of limestone used for the Portland cement clinker production (Marinoni et al. 2015; Galimberti 

et al. 2016). 

The main goal of this study is to present an industrial case study, by investigating issues related to reaching the target 

quality of the lime product in Twin Shaft Regenerative (TSR) kilns. Furthermore, this study also attempts to improve the 

knowledge on burnability and lime reactivity of an ancient microbial limestone, affected by exceptionally long and 

pervasive diagenesis, and showing an unusual heating behavior with a low burnability associated with an evident sintering 

tendency at 1150 °C. 

The Lime Operation at Ouplaas Mine, near Daniëlskuil in the Northern Cape Province, South Africa (Fig. 1), entails the 

mining of high-grade calcium carbonate of Neoarchean age, crushing, screening, burning, and milling in the production 

of limestone aggregate, filler, and burnt lime, as well as a hydration facility for the production of slaked lime. Idwala Lime 

commissioned two modern energy efficient Cimprogetti’s double TSR kilns with a capacity of 550 TPD in 2011. The first 

kiln (K9) was erected in September 2013, and the second (K10) in February 2014. Significant issues were identified during 

the kiln start-up in the early stage of production and regarded either the low reactivity, or the high residual  CO2 content 

of the lime. Moreover, lumps of burnt lime observed at the discharging drawers of the kiln presented an evident variability 

of color, ranging from light brown (5YR 6/4) to pale brown (5YR 5/2), and medium dark gray (N4), according to the 

Geological Munsell Rock-color chart (Table 1). Primarily, the color inhomogeneity was explained as due to different 

oxidation states, namely significant inhomogeneous distribution of the heat flow within the kiln section, because of the 

different residual  CO2 content.  

Secondary, the visual inspection of limestone aggregates transported over the conveyor belt to the stockpile allowed 

identifying at least two or three main different lithofacies types, which could affect the final quality of the lime. During the 

six-month period of the commissioning phase, different process parameters were controlled, and the production of both 

kilns was stabilized. The target of a low residual  CO2 content (< 2%) was easily matched; on the contrary the slaking 

reactivity did not reach the expected ( t60 < 2 min.), according to the EN 459-2 standard test method (Table 1, Vola and 

Sarandrea 2014). 

Hence, limestone samples from different benches of the mine, namely 2P, 4P and 4S, were sampled by the client and 

sent to Cimprogetti laboratory, to evaluate their compositional, i.e. chemical and mineralogical, microstructural and 

petrographic features, the thermal behavior, and the burnability at different temperatures, to simulate different 

combustion conditions in TSR kilns. Data collection described the unusual burnability of the Neoarchean limestone, and 

allowed identifying its sintering or overburning tendency, which seems to be controlled by the pervasive 

micrite/microsparite distribution within the primary microbial carbonate texture combined with the presence of abundant 

organic carbon (kerogen), which also burns during the calcination process. Moreover, the uneven distribution of non-

carbonate impurity, essentially clay minerals and pyrite, negatively affects the reactivity and the available lime index. 

Taking into account the mine stratigraphy (Fig. 2) and the lime reactivity of different strata, it was possible to calculate 

the average weighted reactivity of each bench and, subsequently, the expected reactivity of different raw mixes feeding 

to the kilns. This multidisciplinary research demonstrates that the judicious selection of raw materials from the mine 

significantly improves the quality control of the quicklime production and that it is good practice selecting the best raw mix 

to feed to stockpiles and kilns. This step must be considered of primary importance, as well as the fine tuning of different 

process parameters (cf. Vola and Sarandrea 2014). 
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Geological setting 

The limestone quarried at the Ouplaas Mine in Daniëlskuil, Griqualand West, northern Cape Province, South Africa, belongs 

to the “Economic Limestone Zone” of the Lime Acres Member of the Ghaap Plateau Dolomite Fm. according to SACS (1980), 

whereas according to Beukes (1980) this limestone represents the uppermost part of the Kogelbeen Fm. / the lower part 

of the Gamohaan Fm. The Ouplaas Mine limestone is part of the Neoarchean Campbellrand-Malmani platform, which 

represents one of the oldest carbonate shelves (2521 ± 3 Ma according to Sumner and  

Table 1  Results of preliminary technical tests performed on burnt lime samples from the industrial plant (Vola and 

Sarandrea 2014) 

Burnt state Unit Soft Medium Hard 

Munsell rock-color  light 

brown 

pale 

brown 

medium 

dark 

gray 

Residual  CO2 Wt. % 2.8 1.7 1.3 

Reactivity  (t60) min 1.01 11.43 NR 

Reactivity  (Tmax) °C 70.00 61.6 41.7 

Available lime index Wt.% 94.5 92.9 89.7 

BET specific surface  

area 

m2/g 4.0 1.4 0.35 

Mercury intrusion  

porosity 

Wt.% 47.62 41.89 32.18 

Average pore radius µm 0.31 0.52 1.33 

Symbols legend: NR = t60 not reached 

Bowring 1996) with microbialites and stromatolites preserved worldwide (Grotzinger 1989; Grotzinger and James 2000). 

The Campbell Group carbonates are host to many economically important mineral deposits in the Northern Cape 

Province (Altermann and Wotherspoon 1995). The eastern part of the platform is traditionally called Transvaal Basin, 

whereas the western part is called Griqualand West Basin (Fig. 1). 

From a structural point of view, the Campbellrand-Malmani carbonate platform (Fig. 1e) is extremely well preserved. 

Undated tectonic events are limited to gentle warping over most of the craton with locally steeper dips around the 

Bushveld Complex in the North and to intense folding and faulting in the Kheis Belt and Dooringberg Fault Zone, which is 

coincident with the western boundary of the Kaapvaal craton (Walraven et al. 1990; Sumner 1995) (Fig. 1). 

Metamorphic overprint did not reach temperatures above 200 °C (Button 1973; Miyano and Beukes 1984). Most 

outcrops present sub-greenschist facies metamorphism, but amphibole is locally present due to Bushveld contact in the 

Malmani Subgroup, and supergene alteration during late fluid flow produced local Pb-Zn, fluorite, and gold deposits in 

both the Malmani and Cambellrand subgroups (Sumner and Beukes 2006). 

The thickness of the Campbellrand Subgroup carbonates is about 1.5–2 km, with predominantly shallow-water subtidal 

to peritidal facies in the north and east. Platform slope and basinal deposits are preserved in the south and west (Fig. 1) 

and are about 500 m thick (Beukes 1980, 1987; Sumner 1997a, b). Shallow-water lithofacies include fenestrate 

microbialites, laminated planar, domal and columnar stromatolites, peloidal packstone to grainstone, and primary radial-

fibrous precipitate, i.e. the so-called herringbone calcite (Sumner and Grotzinger 1996, 2000, 2004). Altermann and 

Schopf (1995) reported also about filamentous and colonial coccoid microbial fossil assemblage from drill core samples 

of stromatolite cherty limestones obtained at the Lime Acres. 



 

Materials and methods 

Sampling and lithofacies description 

This research activity was carried out on eight main samples (2P1, 2P2, 2P3, 2P4; 4P1, 4P2, 4P3, 4S) from three different 

benches (2P, 4P and 4S) of the mine (Fig. 2). The preliminary lithofacies inspection was performed on prismatic chunks cut 

with a diamond wire (Fig. 3). Subsequently, chemical (X-ray fluorescence spectroscopy and C-S elemental analysis), 

mineralogical (X-ray diffraction with quantitative phase analysis), petrographic (optical polarizing and cold 

cathodoluminescence microscopy), and thermal (thermogravimetric and  differential thermogravimetric analysis) analyses 

of the limestone, were coupled with burnability and technical tests on derived burnt lime samples. 

Petrographic and cathodoluminescence analyses (optical polarizing microscopy) 

The petrographic analysis was performed on 30 thin sections using an optical polarizing microscope (OPM) equipped with 

a high-resolution digital camera. Carbonate depositional textures were described according to the classification of 

carbonate rocks proposed by Dunham (1962), Friedman (1965), Embry and Klovan (1971), Sibley and Gregg (1987) (Table 

2 and Fig. 4). Micrite refers to microcrystalline calcite crystals with size < 4 µm; microsparite indicates calcite crystals 

between 10 and 50 µm; sparite indicates clear calcite crystals larger than 62 µm (cf. Tucker and Wright 1990; Flügel 2004). 

Thin sections have also been examined under a cold cathodoluminescence microscope (CLM) performed with a Nuclide 

Luminoscope ELM 2B, operating at 10 kV with a beam current between 4 and 6 mA and vacuum gauge 60–80 mTorr, at 

the University of Milan. 

Chemical analysis (X‑ray fluorescence spectroscopy and C‑S elemental analysis) 

The terms of pure limestone, slightly dolomitic limestone, dolomitic limestone, calcitic dolomite, slightly calcitic dolomite 

and dolomite are used according to the chemical classification of carbonate rocks proposed by Frolova (1959), as reported 

in Chilingar (1960). The chemical analysis was carried out at ACME Analytical Laboratories  

Ltd., Vancouver, Canada, either on limestone whole-rock  
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Fig. 2  a Stratigraphic log of the Ouplass Mine, Daniëlskuil, Griqualand West, South Africa with location of the analyzed 

samples. b Different landscapes of the mine with line drawing of stratigraphy. Five vertically superimposed benches are 

recognized, namely 2P, 3P, 4Pa, 4Pb, and 4S. Only benches 2P and 4P feed to stockpiles for the production of lime. Bench 

3P is mined but rejected, probably because mainly dolomitic in composition. The top bench 4S is strongly silicicfied and 

belongs to the “cherty zone”, which goes to optical sorting plant and is partially recovered for feeding to the stockpile.  



 

The overburden of this deposit is brownish colored 
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samples used for petrographic thin section preparation, ignition (LOI), afterward they were fused in a platinumor on lime 

samples burnt at 1050 and 1150 °C (Tables 3, gold crucible with lithium tetraborate flux. The molten 4, and 5). Samples 

were roasted to determine the loss on material was cast in a platinum mold, and fused discs  

◂Fig. 3  Lithofacies inspection of limestone samples from benches 2P and 4P of the Ouplaas Mine. a Dark gray microbial 

boundstone with irregular fenestrae (microbialite A) filled by coarse poikilotopic calcite cement (sample 2P1). b Laminated 

microbial boundstone made of micrite laminae recrystallized in microsparite (microbialite B) crossed by stylolites infilled 

by organic matter (sample 2P2). c Microbialite B with deformed recrystallized lamination crossed by black stylolites (sample 

2P3). d Gray microbial boundstone (microbialite B) with peloidal intraclastic packstone/grainstone (sample 2P4). e 

Laminated microbial boundstone made of micrite laminae recrystallized in microsparite (microbialite B) crossed by 

stylolites (sample 2P2b). f Laminated microbial limestone with primary fenestral cavities with a first generation of 

isopachous fibrous marine cement and then coarse equant calcite (sample 2P4b). g–h Gray laminated microbial 

boundstone with irregular fenestrae filled by cement and black stylolites infilled by organic carbon (sample 4P1a-b). i 

Laminated microbialite with rounded mm-size intraclast (sample 4P2). l Packstone/grainstone with peloids and intraclasts 

(sample 4P3) were analyzed by a PANalytical Axios wavelength-dispersive X-ray fluorescence spectrometer (XRF-WDS). The 

declared detection limit was 0.01% for the major elements  (SiO2,  Al2O3, Fe 2O3, CaO, MgO, Na 2O, K 2O, MnO, TiO 2, P 2O5,  

Cr2O3, Ba), while the detection limit was 0.002%, for SO 3, Sr, V 2O5, and Zr, and was 0.001% for Cu, Ni, Pb, Zn. The analytical 

determination of total carbon (TC), total organic carbon (TOC), and total sulfur (S) was carried out by means of combustion 

infrared detection technique using a Leco CS844ES analyzer with detection limit 0.02%. 

Diffraction analysis (X‑ray diffraction with quantitative phase analysis) 

The X-ray powder diffraction analysis (XRD) was performed at the University of Milan-Bicocca using a Bragg–Brentano 

PANalytical X’Pert Pro PW3040/60 X-Ray diffractometer with CuKα radiation (1.5417 Ǻ, 40 kV and 40 mA), over the angular 

2θ-range 5–80°, with a divergence slit of 1/2° as instrumental setting with a counting time of 30 s/step and with a 0.02° 

step, on the same powdered samples used for the XRF and C-S elemental analyses. Samples were back-loaded on a flat 

sample-holder. The identification of mineral phases was performed running the PANalytical X’Pert High-Score software. 

The quantitative phase analysis (QPA) was performed running the GSAS-EXPGUI software package (Larson and Von Dreele 

1994; Toby 2001) for the Rietveld refinement (Bish and Howard 1988; Young 1993) (Tables 6, 7, 8 and Fig. 5). The reliability 

of QPA has been checked comparing the chemical analysis of each sample determined by XRF with that calculated by 

theoretical chemical composition from the literature and the QPA determinations. Differences of these complementary 

chemical compositions are close, attesting the good accuracy of the QPA by XRD (Table 7). 

Scanning electron microscopy 

The microstructural analysis combined with the elemental analysis on whole-rock centimeter-sized limestone and burnt lime 

samples, polished and carbon coated, was performed at the University of Milan-Bicocca, using a Tescan Scanning Electron 

Microscope (SEM) equipped with an X-ray Dispersive Energy (EDX) spectrometer for microanalysis. The analysis was 

performed running high-vacuum mode for high-resolution backscattered electrons (BSE) and Secondary Electron (SE) 

imaging (Fig. 6). 

Thermal analysis (thermogravimetric and  differential thermogravimetric analysis) 

Whole-rock centimeter-sized prismatic samples were fired in a Nabertherm thermogravimetric electric muffle furnace under 

air for 5 h (h). The thermal analysis (TG) was carried out adopting the following experimental conditions: preheating time of 

2 h (h) for reaching the maximum temperature of 1200 °C, meaning a heating rate of about 10 °C/min, followed by 3 h of 

burning time at the maximum temperature. The obtained differential thermogravimetric (DTG) curves present typical 

intensive endothermal reaction peaks occurring for the thermal decomposition of carbonate phases in the temperature 

range between 600 and 1200 °C, but mostly at temperature > 700 °C (Emmerich 2011). Calcination parameters, i.e. starting 

and ending time, maximum peak and delta reaction time ( t1,  t2,  tmax, Δt), starting and ending temperature, maximum peak 

and delta reaction temperature  



 

 (T1,  T2,  Tmax, ΔT), were extrapolated from the TG-DTG analysis too (Table 9 and Fig. 7). 

Burning and technical tests 

Burning tests were carried out on whole-rock samples in a muffle furnace in air condition at different temperatures, 1050 

and 1150 °C, adopting the following heating steps: preheating time of 2.5 h for reaching the maximum temperature, 

followed by 3 h of burning time at the maximum temperature. Subsequently, lime pebbles were crushed and then powdered 

into a ring mill. The residual CO 2 content and the reactivity of burnt limes were carried out according to the European 

calcimetry and slaking test methods (EN 459-2 2010). The procedure for testing the reactivity consists in measuring the 

temperature rise of a milk of lime obtained adding 150 g of powdered quicklime at time zero into a Dewar thermos 

containing 600 ml of water at 20 °C. The water with lime is kept in movement by an agitator at the speed of 400 rpm. The 

temperature rise (ΔT 40 °C or  t60), the maximum slaking temperature  (Tmax), and the Total Active Slaking Time (TAST) are 

determined. According to the European practice used throughout the lime producers,  
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Fig. 4  Petrographic and 

cathodoluminescence 

analysis of limestone 

samples from benches 2P, 

4P and 4S of the Ouplaas 

Mine. a Fenestrate 

microbialite (microbialite 

A) with centimeter-size 

fenestral voids filled by 

clear and twinned 

poikilotopic calcite 

associated with type 1 

hypidiotopic dolomite (D1) 

and late burial brownish 

type saddle dolomite (D2) 

(sample 2P1). b Cloudy 

radial fibrous marine 

precipitate, i.e. 

herringbone calcite 

(sample 2P1). c Laminated 

clotted peloidal micrite 

(microbialite B) cut by 

stylolites enriched by 

kerogen (sample 2P2). d 

Fenestrate microbilite with 

poikolotopic calcite and 

clotted peloidal micrite 

(microbialite B) (sample 

2P3). e-f Enlarged cavity 

with different layers of 

microsparite, thin layers of 

black carbon (kerogen) 

associated with stylolites, 

and poikilotopic calcite 

(sample 4P2). Kerogen 

segregation on the rims 

(sample 4P2). g Laminated 

clotted peloidal micrite 

and microsparite (sample 

4P3). h Chert replacement 

on coarse sparite is 

superimposed by burial 

saddle dolomite (sample 

4S). Symbols legend: PPL: 

plane polarized light; XPL: 

crossed polarized light; 

CLM: 

cathodoluminescence 

microscopy. Main 

diagenetic features: EQ: 

equant calcite, HC: 

herringbone calcite. D1: 



 

hypidiotopic mimetic or 

fabric-replacive dolomite 

(type 1), SS: stylolites and 

solution seams, K: carbon 

black (kerogen) 

segregation, K1: kerogen 

bright luminescent under 

CLM, K2: kerogen non-

luminescent under CLM, 

MS: microsparite, PC: 

poikilotopic calcite, NS: 

neomorphic coarse 

sparite, CH: chert 

replacement, D2: saddle 

brownish dolomite 

replacement  

(type 2) 

when  t60 < 3 min. the reactivity is high  (t60 < 1 min. very high), when t 60 is between 3 and 6 min. the reactivity is medium, 

and when t 60 > 6 min. the reactivity is low. The available lime index (ALI) was determined according to the sugar method 

(ASTM C25 2011), where a definite portion of quicklime is dissolved in a sugar solution and titrated against standardized 

HCl solution (Tables 10, 11, 12, 13 and Fig. 8). 

Results 

Limestone characterization 

Five main carbonate lithofacies have been distinguished and summarized in Table 2: 
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Table 3  Results of chemical analysis (XRF-WDS and C-S elemental analysis) of limestone samples from the 

quarry 

  

Code LLD 2P1 2P2 2P3 2P4a 2P4b 2P4c 2P4d 4P1a 4P1b 4P2a 4P2bs 4P3 

Class  SDL L L L L SDML SDL L L ML BS L 

LOI 0.01 43.48 43.7 43.55 43.58 43.32 42.98 43.32 43.67 43.66 42.39 26.46 43.56 

SiO2 0.01 0.91 0.15 0.43 0.18 0.63 2.04 1.04 0.05 0.09 1.99 29.64 0.02 

Al2O3 0.01 0.06 0.02 0.11 < 0.01 0.06 0.09 0.07 < 0.01 < 0.01 0.59 11.51 < 0.01 

Fe2O3 0.01 0.16 0.11 0.1 0.07 0.08 0.15 0.14 0.1 0.09 0.29 2.31 0.07 

CaO 0.01 53.09 54.53 54.94 55.33 54.85 53.1 54.43 54.87 54.84 53.58 20.28 55.54 

MgO 0.01 1.59 0.92 0.44 0.19 0.34 1.23 1.13 0.33 0.38 0.4 1.99 0.17 

Na2O 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.08 < 0.01 

K2O 0.01 < 0.01 < 0.01 0.02 < 0.01 0.01 0.01 < 0.01 < 0.01 < 0.01 0.17 4.02 < 0.01 

MnO 0.01 0.62 0.67 0.79 0.63 0.62 0.6 0.66 0.71 0.66 0.62 0.14 0.5 

SO3 0.002 0.057 0.004 0.044 0.006 0.008 0.029 0.019 0.009 0.012 0.368 2.892 0.019 

TiO2 0.01 0.01 < 0.01 0.01 < 0.01 0.01 < 0.01 0.02 < 0.01 0.01 0.03 0.55 < 0.01 

P2O5 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.05 < 0.01 

Cr2O3 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 

Ba 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0,01 < 0.01 

Cu 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.001 < 0.001 0.002 0.005 < 0.001 

Ni 0.001 < 0.001 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.006 < 0.001 

Pb 0.001 0.003 0.002 < 0.001 0.004 < 0.001 0.002 0.002 0.002 0.002 0.002 0.004 0.002 

Sr 0.002 < 0.002 0.003 0.002 < 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.002 < 0.002 

V2O5 0.002 < 0.002 0.003 0.002 < 0.002 < 0.002 0.003 < 0.002 < 0.002 < 0.002 < 0.002 0.016 < 0.002 

Zn 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001 

Zr 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 0.008 < 0.002 

SUM – 100.0 100.1 100.4 100.0 99.9 100.2 100.8 99.7 99.7 100.4 99.9 99.9 

TOT/C 0.02 12.51 12.43 12.41 12.33 12.75 12.28 12.48 12.81 12.46 12.54 14.26 12.64 

TOT/S 0.02 0.03 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 0.2 1.68 < 0.02 

C/ORG 0.02 0.59 0.75 0.75 0.64 1.27 1.26 1.0 1.17 1.02 1.33 1.13 0.89 

CaO/MgO – 33.4 59.3 124.9 291.2 161.3 43.2 48.2 166.3 144.3 134.0 10.19 326.7 

H.I – 1.6 0.9 0.5 0.2 0.4 1.3 1.2 0.3 0.4 0.5 Nd 0.2 

The carbonate classification is based on Frolova (1959) that considers the CaO/MgO ratio criterion 

Symbols legend: SDL slightly dolomitic limestone, L pure limestone, SDML slightly dolomitic marly limestone, ML marly 

limestone, BS black shale, TOT/C total carbon, TOT/S total sulfur, C/ORG organic carbon, H.I. hydraulic index according to 

Elsen et al. (2011) 

Code LLD 2P1 2P2 2P3 2P4 4P1b 4P2a 4P2b 4P3 

SiO2 0.01 1.22 0.25 2.4 1.4 0.17 1.69 2.21 0.07 

Al2O3 0.01 0.10 0.03 0.8 < 0.01 0.03 0.43 0.66 0.03 

Fe2O3 0.01 0.40 0.19 0.3 0.2 0.15 1.17 1.89 0.14 

CaO 0.01 93.11 96.88 93.6 96.0 98.35 89.36 81.91 99.75 

MgO 0.01 4.43 1.43 1.1 1.2 0.61 6.02 11.46 0.29 

Na2O 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

K2O 0.01 0.01 < 0.01 0.2 < 0.01 < 0.01 0.08 0.15 < 0.01 

MnO 0.01 1.16 1.17 1.4 1.1 1.19 1.36 1.54 1.08 

TiO2 0.01 0.01 0.02 < 0.01 < 0.01 0.01 0.03 0.04 0.01 

SO3 0.002 0.10 0.02 0.3 0.1 0.16 0.44 0.33 0.01 



  

 

Table 4  Results of chemical 

analysis (XRF-WDS and C-S 

elemental analysis) on burnt 

lime samples at 1050 °C  

(normalized) 

Table 5  Results of chemical 

analysis (XRF-WDS and C-S 

elemental analysis) on burnt 

lime samples at 1150 °C  

(normalized) 

Table 6  Results of X-Ray 

diffraction quantitative phase 

analysis (XRD-QPA) of 

limestone samples 

Agreement factors ( Rwp, χ2) for the Rietveld refinement (Larson and Von Dreele 1994). 

Symbols legend: fundamental mineral phases, Cal: Calcite: α-CaCO3; Dol: Dolomite: 

CaMg(CO3)2; Qtz: Quartz: α-SiO2; 

Subordinated mineral phases: Ill: Illite + 2, Fe + 3)6AlSi3O10(OH)( 8H; Py: Pyrite: α-FeS3O, K)y(Al4∙Fe4∙Mg2; Pl: plagioclase 

(Na,Ca)(Si,Al)4∙Mg6)(Si8‐y∙Aly)O20(OH)4; Chlorite: Chl: 4O8 

Chlorite (Mg,  Fe 

Abbreviations of minerals according to Whitney and Evans (2010) 

1) dark gray fenestrate microbial boundstone, slightly dolomitic with fibrous herringbone calcite (microbialite A, sample 

2P1; Figs. 3a and 4a–b), 

Sr 0.002 < 0.01 0.01 < 0.01 < 0.01 0.01 0.01 < 0.01 < 0.01 

SUM – 100.5 100.0 100.2 100.0 100.7 100.6 100.2 101.4 

TOT/C 0.02 0.19 0.21 0.15 0.26 0.19 0.2 0.14 0.21 

TOT/S 0.02 0.07 0.03 0.12 0.03 0.02 0.11 0.1 0.02 

Code LLD 2P1a 2P1b 2P2 2P3 2P4 4P1b 4P2a 4P2b 4P3a 4P3b 

SiO2 0.01 0.61 1.39 0.17 2.06 1.18 0.04 1.51 2.21 0.07 0.10 

Al2O3 0.01 0.06 0.07 0.02 0.65 0.02 < 0.01 0.43 0.90 0.04 0.05 

Fe2O3 0.01 0.24 0.34 0.13 0.30 0.13 0.18 0.72 1.66 0.17 0.17 

CaO 0.01 95.9 94.7 98.3 94.5 97.6 98.1 92.7 82.7 98.0 98.5 

MgO 0.01 2.52 2.84 0.79 1.08 0.40 0.54 3.19 10.52 0.36 0.32 

Na2O 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.07 < 0.01 < 0.01 < 

0.01 

K2O 0.01 < 0.01 < 0.01 < 0.01 0.14 < 0.01 < 0.01 0.08 0.20 < 0.01 < 

0.01 

MnO 0.01 1.09 1.09 1.17 1.42 1.13 1.18 1.26 1.41 1.02 0.92 

TiO2 0.01 0.01 0.02 < 0.01 0.03 0.02 0.02 0.02 0.06 < 0.01 0.03 

SO3 0.002 0.04 0.14 < 0.01 0.08 0.01 0.09 0.29 0.41 0.08 0.07 

Sr 0.002 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 

0.01 

SUM – 100.5 100.6 100.5 100.3 100.5 100.2 100.3 100.1 99.7 100.2 

TOT/C 0.02  0.19 0.16 0.12 0.12 0.13 0.1 0.14 0.1 0.1 0.12 

TOT/S 0.02  0.03 0.04 < 0.02 0.03 < 0.02 < 0.02 0.09 0.14 0.04 0.03 

      

Code 2P1 2P2 2P3 2P4a 2P4b 2P4c 2P4d 4P1a 4P1b 4P2a 4P2bs 4P3 

Rwp 9.07 9.22 9.38 8.92 9.10 9.21 9.04 8.88 8.83 9.52 12.84 8.95 

χ2 3.84 3.77 4.45 4.11 3.98 3.83 3.92 3.68 3.72 4.37 5.38 4.05 

Cal 92.8 95.8 97.9 99.8 98.4 93.1 94.6 99.1 99.1 95.2 37.1 99.7 

Dol 6.6 4.0 1.8 0.2 1.2 5.1 4.6 0.9 0.9 1.3 2.0 0.3 

Qtz 0.6 0.2 0.3 0.0 0.4 1.7 0.8 0.0 0.0 1.2 4.8  

Ill   1.6 48.5  

Chl    3.2  

Py   0.7 1.8  

Pl  Tr  2.4  



 

 

2) gray microbial boundstone, slightly dolomitic (samples 2P2, 2P4, and 4P1), with laminated clotted peloidal micrite 

(microbialite B), sometimes associated with tubular cavity framework (2P4) and subordinated fenestrate microbialite 

A (Figs. 3b, d–h and 4c), 

3) gray marly limestone associated with sporadic black shales made of dolomitic microbial boundstone (microbialite B) 

with coated grains and characterized by abundant stylolites and solution seams with kerogen and pyrite (samples 2P3 

and 4P2; Figs. 3c, i and 4d–f), 

4) dark gray pure limestone (sample 4P3; Figs. 3l and 4g) with centimeter-sized beds of intraclastic packstone to 

grainstone, peloidal mudstone-wackestone, locally passing into boundstone with laminated clotted peloidal micrite 

(microbialite B). 

5) dark gray cherty limestone (sample 4S; Fig. 4h) with black nodules of replacive chert on coarse neomorphic sparite. 

This last lithofacies goes to the optical sorting plant and is partially recovered for feeding to the stockpile. 



  

 

These microfacies include various diagenetic features such as: radial fibrous banded cement, i.e. the herringbone calcite 



 

 

(cf. Sumner and Grotzinger 1996, 2004), neomorphic microsparite after recrystallizion of micrite, equant drusy and 

poikilotopic sparite cements, mimetic or fabric-replacive hypidiotopic dolomite (type 1), stylolites and solution seams, 

organic carbon (kerogen) segregation and impregnation, chert, and saddle dolomite (type 2) (cf. Figs. 3, 4 and Table 2). 

Chemical (XRF-WDS and C-S elemental analysis), and mineralogical (XRD-QPA) analyses attest the presence of 

subordinated non-carbonate impurity, which is mainly ascribed to clay and opaque minerals (Fig. 5, Tables 3 and 6). The 

silica content generally ranges between 0.02 up to 2.04%, but can reach the 30% in sporadic black shales associated with 

gray dolomitic limestones (cf. sample 4P2bs, Table 3). The calcite content generally varies between 92% up to 99% on the 

whole rock, but locally it can be lower, especially within the black shales where calcite is just the 37%. Sample 4P2 present 

the lowest content of carbonates and the highest content of impurity. Impurities are mainly represented by dolomite (2P1, 

2P4), quartz (4P2, 2P3), clay minerals (4P2, 2P3) and pyrite (4P2, 2P4, 4P3), coupled with organic carbon (kerogen). Gray 

marly limestone samples, namely 2P3 and 4P2, locally present microcrystalline quartz and clay minerals, i.e. illite and 

chlorite, associated with pyrite and abundant organic carbon. These impurities are particularly concentrated along 

stylolites. 

The SEM-EDX microanalysis confirms the chemical composition of clay minerals (Fig. 6). Moreover some chemical maps 

on different limestone samples pointed out the ubiquitous distribution of the manganese oxide, which is probably diffused 

as microcrystalline braunite within the fine matrix of the whole-rock, reaching the average content of 0.65%. 

The thermal analysis (TG-DTG) points out some significant burnability differences between samples from different strata 

(Table 9 and Fig. 7). The plot A, showing the ignition loss (%) vs. time (s) (Fig. 7a), permits to extrapolate the calcination 

velocity (g/s), pointing out the highest velocity for sample 2P1, followed by sample 4P2. Plot B, showing the DTG normalized 

curve (Fig. 7b), points out the mass flow ((g/s)/ginitial%) as a function of burning temperature (°C). All samples present a 

single peak of dissociation because they are mainly calcitic in composition. The only exception is sample 4P2, which 

presents double peaks of dissociation, indicating the presence of a double carbonate, most likely dolomite (Gunasekaran 

and Anbalagan 2007). The first peak at lower temperature is due to the dissociation of the magnesium molecule  (MgCO3), 

with the formation of periclase and calcite, while the second peak at the highest temperature is due to the dissociation of 

the calcitic molecule  (CaCO3), according to the literature (Boynton 1980; Emmerich 2011). The height of the peaks is 

proportional to the total  CO2 emission. The weight loss (LOI) between 200 and 600 °C is due to the content of bound water 

of clay minerals and to the organic carbon (kerogen). 



  

 

  



 

 

Fig. 5  Observed (crosses), 

calculated (continuous 

line) and difference 

(bottom line) profiles for 

Rietveld refinements of 

XRD powder patterns of a 

Limestone sample 2P1 in 

the angular range 3–90° 

2θ, and b Lime sample 4P2 

burnt at 1150 °C in the 

angular range  

3–120° 2θ. Vertical bars 

mark Bragg peak positions 

Burnt lime characterization 

Burnt lime presents a typical brownish 

color, which is light brown at 1050 °C, pale 

brown at 1150 °C, and medium brown to 

dark gray at 1200 °C. The only exception is 

represented by very thin layers of 

siliciclastic impurity along stylolites, which 

are generally whitish after the thermal 

shock. Chemical (XRF-WDS and C-S 

elemental analysis) and mineralogical 

(XRD-QPA) analysis of burnt limes (Table 8) 

shows that lime (CaO) ranges from 75% up 

to 95%. The following subordinated 

mineral phases were identified: periclase 

(MgO – max 12%), dicalcium manganate  

(Ca2(MnO4) – max 6%), larnite  (Ca2SiO4 – 

max 4%), hatrurite  (Ca3SiO5 – max 2%), 

quartz  (SiO2 – max 1%); merwinite  

(Ca3Mg(SiO4)2 – max 6%); tricalcium aluminate ( Ca3Al2O6 – max 2%) and srebrodolskite ((Ca2Fe3 + 2O5) – max 4%). Finally, 

some accessorial minerals (< 0.5%), were also determined: gehlenite  (Ca2Al(AlSi)O7); fersilicide (FeSi) and anhydrite ( 

CaSO4). 

The SEM-EDX analysis, performed on burnt chunk samples, confirms the composition of accessory mineral phases 

already detected by means of XRD analysis. It points out different calcium and magnesium silicate burnt products, mostly 

concentrated along stylolites. They appear with apparently fluidal textures, probably indicating a partially and very 

localized melting (Fig. 6b). 

According to the slaking test method (EN 459-2 2010), the reactivity of lime burnt at 1050 °C is very high ( t60 < 1 min.) 

for samples 2P1, 2P4 and 4P3, high ( t60 < 2 min.) for samples 2P2, 2P3, 4P1 and medium ( t60 = 4 min.) for sample 4P2. In 

any case, the average reactivity at 1050 °C is high ( t60 = 1.3 min.,  Tmax = 72.3 °C) (Table 10 and Fig. 8a). Conversely, burnt 

lime at 1150 °C generally presents a low reactivity. Especially, samples 2P2,  



  

 

4P2 and 4P3 are medium reactive ( t60 = 5–6 min.), while samples 2P3, 2P4 and 4P1 are slowly reactive  (t60 > 9 min.). A 

significant exception is represented by sample 2P1, which maintains a high reactivity  (t60 < 2 min.) at 1150 °C. In any case, 

the average reactivity at 1150 °C is low  (t60 = 7.4 min.,  Tmax = 67.7 °C) (Table 11 and Fig. 8b). Either lime burnt at  

 

Fig. 6  Scanning electron microscopy (SEM-EDX) of limestone  lime samples. Legend for mineral abbreviations: Cal: calcite; 

Dol:  

and burnt lime samples along with stylolites. a, b, c Back scattered dolomite; Py: pyrite; Chl: clinochlore; Ill: 

Illite images of limestone samples. e, f, g Back scattered images of burnt  

Code Unit 2P1 2P2 2P3 2P4 4P1a 4P1b 4P2 

Starting time  

(t1) 

min 58.0 70.6 74.1 70.5 68.3 70.4 55.9 

Ending time  (t2) min 133.0 149.1 149.6 150.0 138.8 148.4 150.9 

Max time  (tmax) min 97.0 105.6 112.6 106.5 105.3 108.4 100.4 

Δt  (t2−t1) min 75.0 78.5 75.5 79.5 70.5 78.0 95.0 

Starting T  (T1) °C 682.0 752.0 744.0 755.0 728.0 746.0 606.0 

Ending T  (T2) °C 1188.0 1195.5 1194.5 1197.0 1187.0 1194.0 1197.0 

Max T  (Tmax) °C 1010.0 1020.0 1038.5 1032.0 1021.0 1026.0 993.0 

ΔT  (T2−T1) °C 506.0 443.5 450.5 442.0 459.0 448.0 591.0 

Table 9  Results of numerical 

parameters from thermal 

analysis (TG-DTG) 

Symbols legend: t time, T temperature 



 

 

1050 °C or at 1150 °C maintains a high available lime index (ALI ranges between 91.8 and 98.4% at 1050 °C; ALI ranges 

between 95.2 and 98.8% at 1150 °C, cf. Tables 10 and 11). 

Variations of reactivity, plotted against the burning temperature, point out to an unusual and drastically pronounced 

sintering, or overburning tendency of the Neoarchean  

Code Unit 2P1 2P2 2P3 2P4 Weighted 

average 2P 

4P1 4P2 4P3 Weighted  

average  

4P 

m-thick m 2.0 2.1 3.9 2.1 – 14.9 2.7 0.4 – 

Residual  CO2 Wt. % 0.46 0.41 0.40 0.06 – 0.17 0.5 0.5 – 

CaCO3 (calculated) Wt. % 1.05 0.93 0.91 0.14 – 0.39 1.1 1.1 – 

Total CaO (XRF-normalized) Wt. % 93.1 98.3 93.6 96.0 95.0 98.3 89.4 99.7 97.0 

Available lime index (ALI) Wt. % 91.8 96.5 92.3 97.8 94.2 98.4 92.7 96.1 97.5 

t60 (1050 °C) min 0.81 1.37 1.74 0.82 1.3 1.24 4.00 0.97 1.6 

Tmax (1050 °C) °C 73.0 66.9 65.4 71.8 68.5 73.6 62.8 77.0 72.1 

T.A.S.T min 5.5 5.0 4.5 4.0 4.7 3.5 6.0 6.0 3.9 

Viscosity – Low Low Low Low – High Low High – 

Code Unit 2P1 2P2 2P3 2P4 Weighted  

average  

2P 

4P1 4P2 4P3 Weighted  

average  

4P 

m-thick m 2.0 2.1 3.9 2.1  14.9 2.7 0.4  

Residual  CO2 Wt. % 0.2 0.4 0.0 ND  0.5 0.4 0.7  



  

 

Fig. 7  Thermal analysis (TG-DTG) on limestone samples of the Ouplass Mine. a Loss ignition (%) vs. time (min.). This plot 

allows distinguishing calcination velocity of different samples. b Normalized Mass flow ([g/s]/ginitial)% vs. Temperature (°C). 

This plot allows distinguishing different lithology, especially sample 4P2 presents double Table 10  Results of technical tests 

on burnt lime samples at 1050 °C reaction peaks, pointing out its dolomitic composition, while sample 2P1 presents the 

fastest thermal decomposition, i.e. calcination velocity (g/s). c: Visual comparison of the same prismatic chunk before and 

after the calcination at 1200 °C  

CaCO3 (calculated) Wt.% 0.5 0.8 0.0 ND  1.2 0.8 1.6  

Total CaO (XRF-

normalized) 

Wt. % 95.3 98.3 94.5 97.6 96.1 98.1 92.7 95.5 97.2 

Available lime index (ALI) Wt. % 95.2 98.8 98.0 98.6 97.7 98.5 92.7 95.8 97.6 

t60 (1150 °C) min 1.8 6.8 17.5 9.4 10.5 11.3 6.1 7.3 10.4 

Tmax (1150 °C) °C 70.3 67.3 62.0 64.5 65.3 65.2 63.9 70.4 65.1 

T.A.S.T min 6.0 10.5 11.5 11.0 10.1 16.5 8.5 12.5 15.2 

Table 11  Results of technical 

tests on burnt lime samples at  

1150 °C 

ND not determined 

limestone (Fig. 8c), with the exception of samples 2P1 and index (ALI) of each bench, has been calculated consider4P2, 

which present a similar reactivity either at 1050 °C or ing the thickness of each stratum. The average of technical at 1150 

°C. tests performed at 1050 and 1150 °C is reported in Table 12.  

The weight average of different technical parameters, These data have been used to calculate the influence of 

difincluding the reactivity  (t60 and  Tmax) and the available lime ferent raw mixes feeding to kilns (Table 13). 



 

 

Table 12  Technical tests on burnt limes (average of samples burnt at  

1050 and 1150 °C) 

Det. Unit Weighted 

average 2P 

Weighted 

average 

4P 

Total CaO (XRF-

normalized) 

Wt. % 95.5 97.1 

Available lime index (ALI) Wt. % 96.0 97.5 

Reactivity  t60 min 5.9 6.0 

Reactivity  Tmax °C 66.9 68.6 

Reactivity T.A.S.T min 7.4 9.6 

Discussion 

Depositional facies and diagenetic features 

The Neoarchean limestone succession from the Ouplaas Mine is characterized by fenestrate and laminated microbial 

boundstone, associated with peloidal-intraclastic wackestone to packstone, and grainstone, deposited in a shallow subtidal 

to intertidal environment. Early marine carbonate cements consist of radial fibrous fans and herringbone calcite (Beukes 

1980, 1987; Altermann and Schopf 1995; Sumner 1995, 1997a, 1997b; Sumner and Beukes 2006). Depositional textures 

are strongly affected by pervasive diagenetic recrystallization, which converted the micrite into microsparite, and equant 

and poikilotopic coarse sparite cements. The pervasive recrystallization is probably connected to the circulation of 

anchimetamorphic or hydrothermal fluids, often in contact with diabase intrusions, even if not directly observed in the 

mine. This fact is consistent with the Paleoproterozoic magmatism documented by Heaman (1997). Paragenetic pathways 

of carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Organic carbon 

occurs as pigmentation in carbonate crystals, and as segregations of kerogen pigmentation around late diagenetic 

carbonate crystals and cavities (cf. Beukes et al. 1990). In marly limestones (samples 4P3 and 4P2, cf. Table 2, Figs. 3c, i and 

4d–f), clasts are generally composed of kerogen pigmented laminated microsparite, which either floats in a matrix of fine-

grained carbonate mud or is cemented by coarse sparite (Klein and Beukes 1989). According to Beukes et al. (1990), 

kerogen occurs in four major relationships with the carbonate minerals: (1) kerogen as pigmentation in microsparite, (2) 

kerogen and carbonate as reworked detritus, (3) kerogen as pigment segregated from calcite spar, and (4) kerogen 

displaced by carbonate. Some of the kerogen might be related to primary benthic microbial mats and appears to be a light 

brown pigment in the microsparite. Most of the kerogen observed in the studied samples seems to be strictly connected 

with the formation of stylolites and represents a thermally-mature late diagenetic graphitic carbon, which probably 

migrated into the carbonate deposit from another stratigraphically contiguous (or not-contiguous) source rock. 

Limestone burnability and quicklime reactivity 

Limestone microstructure and composition, depending from primary depositional features and diagenetic modifications, 

associated with the ancient geologic age of the rock, play a key role in controlling the kinetics of thermal decomposition, 

including the transfer of hot gases, and the escape of the  CO2 during the calcination process. These factors, as well as the 

burning temperature, control the microstructure of the neo-formed lime crystals in terms of grain growth, and BET specific 

surface area, and thereby the hydration rate of the slaking reactivity  (t60,  Tmax) (Eades and Sandberg 1970; Moropoulou et 

al. 2001; Kiliç and Mesut 2006; Hughes and Corrigan 2009; Soltan 2009; Soltan et al. 2011, 2012; Alaabed et al. 2014). In 

particular, previous studies have demonstrated that limestones with the lowest micrite to sparite ratio exhibit the lowest 

apparent activation energy value, the highest rate of calcination, and the highest lime reactivity (Vola and Sarandrea 2013; 

Marinoni et al. 2015). Effectively, the presence of euhedral-subhedral sparite crystals in the investigated Egyptian 

limestone enhances the formation of triple junction fractures, which also contribute to lowering the activation energy with 

accelerating lime liberation (Soltan and Serry 2011). 



  

 

In the analyzed Neoarchean carbonates, the dominant micritic texture of the microbialite precipitates, even if interested 

by pervasive recrystallization, coupled with the presence of abundant organic carbon (kerogen), are key factors influencing 

the abnormally low burnability. Especially,  

Table 13  Different scenarios 

showing the influence of 

different raw mixes on 

reactivity  

 (t60 and  Tmax) and available 

lime index (ALI) 

Data are from the average of 

technical tests performed on 

bunt limes at 1050 and 1150 

°C 

a c 

 
Time (min) Fig. 8  Reactivity tests according to standard EN 459-2. a Slaking curves of limes 

burnt at 1050 °C. b Slaking curves of limes burnt at 1150 °C. c Variations of reactivity  (t60) at different temperatures (1050 

°C on the left and 1150 °C on the right) help in understanding  

Scenarios Raw mix t60 (min.) Tmax (°C) ALI Notes 

1 2P (100%) 5.9 66.9 96.0 The best raw mix for  t60 

2 4P(100%) 6.0 68.6 97.5 The best raw mix for ALI and  Tmax 

(used  

from September to December 

2013) 

3 2P(65%) + 

4P(35%) 

5.9 67.5 96.5 Raw mix used from February to 

March 2014 

4 2P(35%) + 

4P(65%) 

6.0 67.5 97.0 Natural quarry balance 



 

 

Temperature (°C) 

the sensitivity to high temperature, and the sintering or overburning tendency of burnt lime samples in the restricted range 

of temperatures between 1050 and 1150 °C, with exceptions of sample 2P1 and 4P2 

the low burnability is strictly related to the high sintering or overburning tendency and the low reactivity of the lime. 

Conversely, the presence of early marine herringbone calcite and late diagenetic burial cementation, i.e. the centimetersize 

poikilotopic calcite as in sample 2P1 (Figs. 3a and 4a–b), promotes a locally higher burnability and quicklime reactivity. In 

fact, sample 2P1 presents an earlier starting calcination temperature ( t1), a faster carbonate dissociation rate or calcination 

velocity (Δt) and a lower sintering tendency (see Table 9 and Fig. 7a–b). The evident sintering or overburning tendency of 

the studied Neoarchean limestone is well documented by the progressive darkening of the burnt lime at increasing burning 

temperature (Fig. 7c). This fact is combined with the progressive decay of the lime reactivity, while it doesn’t affect the 

available lime index, which still remain high (Tables 10, 11 and Fig. 8). The typical brownish color of the lime is probably 

linked to the ubiquitous content of manganese-bearing minerals, probably microcrystalline braunite within the parental 

limestone, as shown in the back scattered electron maps obtained by means of the SEM-EDS analysis. Considering the 

temperature rise from the slaking tests  (t60) at 1050 and 1150 °C, it is possible to classify each sample of the Ouplaas Mine 

on the basis of its sensibility to the high temperature (Carmeuse 2014). A first group of samples, including 2P2, 2P3, 4P1 

and 4P3, was identified which is very much sensitive to high temperature; conversely, a second group, including 2P1 and 

4P2 samples, is not so much sensitive to high temperature (Fig. 8c). 

In particular, sample 2P1 shows the highest reactivity either at 1050 °C or at 1150 °C (Tables 10, 11 and Fig. 8a–b). This 

result can be explained considering its different microfacies, presenting predominant fenestrate microbial boundstone 

(microbialite A), characterized by centimeter-sized cavities filled in by poikilotopic calcite (Figs. 3a and 4a–b). The highest 

reactivity of sample 2P1 is consistent with results from the thermal analysis, pointing out its highest velocity in thermal 

decomposition or calcination velocity (Δt), with respect to other samples, lacking the poikilotopic calcite (Table 9 and Fig. 

8b). 

Sample 4P2, which shows a medium reactivity either at 1050 °C or at 1150 °C, is not so much sensitive to high 

temperature as well as sample 2P1, but in this case, the impurity content, mostly represented by dolomite replacements, 

combined with the highest concentration of clay minerals, affects its reactivity (Tables 4, 5, 8, 10, and 11). Another factor 

affecting the limestone burnability could be the organic carbon (kerogen), which also burns during the calcination process. 

In any case, considering that it is almost difficult, if not impossible, from the mining point of view, separating materials 

and strata with a lower technical quality belonging to the same bench, we just calculated the average weighted reactivity 

of benches 2P and 4P, on the basis of the thickness of each lithofacies assemblage (Figs. 2 and 3). Therefore it was possible 

estimating the impact of different lithofacies assemblage from each bench on burnt lime technical parameters (Tables 10, 

11, and 12). Especially, we calculated four different scenarios, showing the impact of different quarry raw mixes on lime 

reactivity and available lime index (Table 13). Results show different raw mixes have a limited influence (ca. 0.1%) either 

on the ALI, or on the quicklime reactivity  (t60,  Tmax). In a particular way the highest reactivity of sample 2P1 has a limited 

effect because the thickness of the bottom stratum of the mine is limited, as well. For this reason it could be useful to 

evaluate a more consistent extraction of this stratum in the early future, by means of an in situ log survey, finalized to 

evaluate its real thickness below current quarrying level. More in general a deep geological survey of the mine, facilitate 

the determination of the real thickness and areal distribution of impure lithofacies, i.e. marly limestones and black shales, 

and to identify any dolomitization fronts. Geological and stratigraphic analysis, coupled with laboratory tests on raw 

materials from each stratum and bench of the mine, represent an essential approach to optimize the quality of the burnt 

lime product. 

Conclusions 

Considering the multidisciplinary analytical approach of this study, we traced the following conclusions: 



  

 

1) The Neoarchean limestone from the Ouplaas Mine is very much sensitive to high burning temperatures showing an 

unusual and drastically pronounced sintering or overburning tendency. Especially, burnt lime presents a high reactivity 

at 1050 °C (t60 = 1.5 min., Tmax = 70 °C), but it rapidly decreases at 1150 °C (t60 = 9 min., Tmax = 65 °C). This fact can 

be better displayed plotting the reactivity against the burning temperature (Cf. Fig. 8c). 

2) The unusual very low thermal behavior or burnability is strongly influenced by depositional textures, diagenetic history 

and secondly by presence of non-limestone impurities. Especially, the high sintering or overburning tendency and the 

low quicklime reactivity are related more to the micritic texture of the microbial boundstone, even if affected by  

diagenetic recrystallization into microsparite, rather than to the restricted presence of non-carbonate mineral 

contaminations. 

3) The sample 2P1 represents the most significant exception. It shows characteristic marine herringbone calcite 

associated with late diagenetic burial cementation, i.e. the centimeter-size poikilotopic calcite. This sample presents 

the highest carbonate dissociation rate or calcination velocity and the least sensitivity to the high temperature, and 

thus the highest quicklime reactivity either at 1050 °C (t60 = 0.8 min., Tmax = 73 °C) or at 1150 °C (t60 = 1.8 min., Tmax 

= 70.3 °C). 

4) The sample 4P2 is also not so much sensitive to high temperature, but its quicklime reactivity is medium either at 1050 

°C (t60 = 4 min., Tmax = 62.8 °C) or at 1150 °C (t60 = 6 min., Tmax = 63.9 °C), because strongly affected by its impure 

composition, i.e. diagenetic replacive dolomite and clay minerals. 

5) The presence of locally concentrated dolomitic marly limestones, back shales, an organic carbon (kerogen), negatively 

affects the quicklime reactivity because significantly lowers the available lime index, moreover kerogen burns during 

the heating process, facilitating the sintering or overburning tendency. 

According to these observations, we also proposed to the customer perform the following useful actions: 

1) To perform a deep geological survey of the mine stratigraphy, finalized to the correct determination of the real 

thickness of the impure strata, to identify dolomitization fronts and impurity distribution to optimize the quality of the 

extracted stone. 

2) To perform an in situ log survey, finalized to evaluate the real thickness of the bottom stratum of the mine (2P1) below 

the current quarrying level, to evaluate the feasibility of its more consistent extraction in the early future. 

The detailed knowledge of the mine stratigraphy, combined with the technical characterization of each stratum, allows 

calculating the real average weighted reactivity of each bench, and subsequently, the expected reactivity of different raw 

mixes feeding to the TSR kilns. This multidisciplinary approach must be repeated on more representative volumes of 

material extracted over the months and the years to validate the above results. If the higher reactivity of bench 2P will be 

validated by a massive campaign of tests, it could be successfully adopted to improve the raw mix feeding to the kilns, 

depending on the target parameter required by the customer. The judicious selection of raw material from different 

benches of mines could also reduce the negative influence of strata with a higher overburning tendency, and/or with a 

lesser compositional quality. 
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