89 research outputs found

    Collaborative Enhancement of Antibody Binding to Distinct PECAM-1 Epitopes Modulates Endothelial Targeting

    Get PDF
    Antibodies to platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitate targeted drug delivery to endothelial cells by “vascular immunotargeting.” To define the targeting quantitatively, we investigated the endothelial binding of monoclonal antibodies (mAbs) to extracellular epitopes of PECAM-1. Surprisingly, we have found in human and mouse cell culture models that the endothelial binding of PECAM-directed mAbs and scFv therapeutic fusion protein is increased by co-administration of a paired mAb directed to an adjacent, yet distinct PECAM-1 epitope. This results in significant enhancement of functional activity of a PECAM-1-targeted scFv-thrombomodulin fusion protein generating therapeutic activated Protein C. The “collaborative enhancement” of mAb binding is affirmed in vivo, as manifested by enhanced pulmonary accumulation of intravenously administered radiolabeled PECAM-1 mAb when co-injected with an unlabeled paired mAb in mice. This is the first demonstration of a positive modulatory effect of endothelial binding and vascular immunotargeting provided by the simultaneous binding a paired mAb to adjacent distinct epitopes. The “collaborative enhancement” phenomenon provides a novel paradigm for optimizing the endothelial-targeted delivery of therapeutic agents

    Planar cell polarity aligns osteoblast division in response to substrate strain

    Get PDF
    Exposure of bone to dynamic strain increases the rate of division of osteoblasts and also influences the directional organization of the cellular and molecular structure of the bone tissue that they produce. Here, we report that brief exposure to dynamic substrate strain (sufficient to rapidly stimulate cell division) influences the orientation of osteoblastic cell division. The initial proliferative response to strain involves canonical Wnt signaling and can be blocked by sclerostin. However, the strain-related orientation of cell division is independently influenced through the noncanonical Wnt/planar cell polarity (PCP) pathway. Blockade of Rho-associated coiled kinase (ROCK), a component of the PCP pathway, prevents strain-related orientation of division in osteoblast-like Saos-2 cells. Heterozygous loop-tail mutation of the core PCP component van Gogh-like 2 (Vangl2) in mouse osteoblasts impairs the orientation of division in response to strain. Examination of bones from Vangl2 loop-tail heterozygous mice by µCT and scanning electron microscopy reveals altered bone architecture and disorganized bone-forming surfaces. Hence, in addition to the well-accepted role of PCP involvement in response to developmental cues during skeletal morphogenesis, our data reveal that this pathway also acts postnatally, in parallel with canonical Wnt signaling, to transduce biomechanical cues into skeletal adaptive responses. The simultaneous and independent actions of these two pathways appear to influence both the rate and orientation of osteoblast division, thus fine-tuning bone architecture to meet the structural demands of functional loading

    Angiogenesis in urinary bladder carcinoma as defined by microvessel density (MVD) after immunohistochemical staining for Factor VIII and CD31

    Get PDF
    Background: Among the patients with bladder cancer, a group is still at risk of disease recurrence, progression, and death from their cancer after curative treatment. Angiogenesis is a crucial pathogenic mechanism for this type of urothelial carcinoma and is a potential therapeutic target. Objectives: To quantify tumor angiogenesis in bladder cancer and determine whether it correlates with tumor stage and grade. Patients and methods: A series of 42 archival samples from carcinomas of the urinary bladder were graded, staged, and analyzed for microvessel density (MVD) by a double immunohistochemical technique using Factor VIII (FVIII) and CD31 antibodies. The correlation between MVD and histopathological grade and tumor stage was evaluated. Results: FVIII and CD31 immunoreactivity was observed in 100% of cases and more intensely with CD31. Significantly higher MVD was determined in invasive tumors than in superficial tumors (p<0.05). MVD increased with tumor grade and stage (p<0.05); MVD was not affected by age or sex of the patients. Conclusion: These data demonstrate that MVD in bladder carcinoma correlates with the tumor grade and stage. Quantification of tumor angiogenesis may allow selection of the type of treatment for bladder cancer patients

    Partial pulmonary embolization disrupts alveolarization in fetal sheep

    Get PDF
    BACKGROUND: Although bronchopulmonary dysplasia is closely associated with an arrest of alveolar development and pulmonary capillary dysplasia, it is unknown whether these two features are causally related. To investigate the relationship between pulmonary capillaries and alveolar formation, we partially embolized the pulmonary capillary bed. METHODS: Partial pulmonary embolization (PPE) was induced in chronically catheterized fetal sheep by injection of microspheres into the left pulmonary artery for 1 day (1d PPE; 115d gestational age; GA) or 5 days (5d PPE; 110-115d GA). Control fetuses received vehicle injections. Lung morphology, secondary septal crests, elastin, collagen, myofibroblast, PECAM1 and HIF1 alpha abundance and localization were determined histologically. VEGF-A, Flk-1, PDGF-A and PDGF-R alpha mRNA levels were measured using real-time PCR. RESULTS: At 130d GA (term approximately 147d), in embolized regions of the lung the percentage of lung occupied by tissue was increased from 29 +/- 1% in controls to 35 +/- 1% in 1d PPE and 44 +/- 1% in 5d PPE fetuses (p < 0.001). Secondary septal crest density was reduced from 8 +/- 0% in controls to 5 +/- 0% in 1d PPE and 4 +/- 0% in 5d PPE fetuses (p < 0.05), indicating impaired alveolar formation. The deposition of differentiated myofibroblasts (23 +/- 1% vs 28 +/- 1%; p < 0.001) and elastin fibres (3 +/- 0% vs 4 +/- 0%; p < 0.05) were also impaired in embolized lung regions of PPE fetuses compared to controls. PPE did not alter the deposition of collagen or PECAM1. At 116d GA in 5d PPE fetuses, markers of hypoxia indicated that a small and transient hypoxic event had occurred (hypoxia in 6.7 +/- 1.4% of the tissue within embolized regions of 5d PPE fetuses at 116d compared to 0.8 +/- 0.2% of tissue in control regions). There was no change in the proportion of tissue labelled with HIF1 alpha. There was no change in mRNA levels of the angiogenic factors VEGF and Flk-1, although a small increase in PDGF-R alpha expression at 116d GA, from 1.00 +/- 0.12 in control fetuses to 1.61 +/- 0.18 in 5d PPE fetuses may account for impaired differentiation of alveolar myofibroblasts and alveolar development. CONCLUSIONS: PPE impairs alveolarization without adverse systemic effects and is a novel model for investigating the role of pulmonary capillaries and alveolar myofibroblasts in alveolar formation

    Differential properties of human ACL and MCL stem cells may be responsible for their differential healing capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human anterior cruciate ligament (hACL) and medial collateral ligament (hMCL) of the knee joint are frequently injured, especially in athletic settings. It has been known that, while injuries to the MCL typically heal with conservative treatment, ACL injuries usually do not heal. As adult stem cells repair injured tissues through proliferation and differentiation, we hypothesized that the hACL and hMCL contain stem cells exhibiting unique properties that could be responsible for the differential healing capacity of the two ligaments.</p> <p>Methods</p> <p>To test the above hypothesis, we derived ligament stem cells from normal hACL and hMCL samples from the same adult donors using tissue culture techniques and characterized their properties using immunocytochemistry, RT-PCR, and flow cytometry.</p> <p>Results</p> <p>We found that both hACL stem cells (hACL-SCs) and hMCL stem cells (hMCL-SCs) formed colonies in culture and expressed stem cell markers nucleostemin and stage-specific embryonic antigen-4 (SSEA-4). Moreover, both hACL-SCs and hMCL-SCs expressed CD surface markers for mesenchymal stem cells, including CD44 and CD90, but not those markers for vascular cells, CD31, CD34, CD45, and CD146. However, hACL-SCs differed from hMCL-SCs in that the size and number of hACL-SC colonies in culture were much smaller and grew more slowly than hMCL-SC colonies. Moreover, fewer hACL-SCs in cell colonies expressed stem cell markers STRO-1 and octamer-binding transcription factor-4 (Oct-4) than hMCL-SCs. Finally, hACL-SCs had less multi-differentiation potential than hMCL-SCs, evidenced by differing extents of adipogenesis, chondrogenesis, and osteogenesis in the respective induction media.</p> <p>Conclusions</p> <p>This study shows for the first time that hACL-SCs are intrinsically different from hMCL-SCs. We suggest that the differences in their properties contribute to the known disparity in healing capabilities between the two ligaments.</p

    Regeneration of Soft Tissues Is Promoted by MMP1 Treatment after Digit Amputation in Mice

    Get PDF
    The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice. © 2013 Mu et al

    Granulysin, a novel marker for extranodal NK/T cell lymphoma, nasal type

    Get PDF
    Granulysin is a cytolytic protein expressed in cytotoxic T and natural killer (NK) cells. Abnormal serum levels of granulysin in lymphomas with NK and cytotoxic phenotype have been shown to correlate with tumour progression. In this study, we investigated the expression pattern of granulysin in routine sections of normal and reactive lymphoid tissues as well as in a large series of lymphomas. In normal tissues, granulysin labelled a small population of cells that double immunostaining revealed to belong to the pool of cytotoxic T/NK cells. Among lymphoid neoplasms, the highest expression of granulysin (71%) was found in extranodal NK/T cell lymphomas of nasal type (ENKTL). To note is that 29% of ENKTLs, which were negative for one or more of classical cytotoxic markers strongly expressed granulysin. Furthermore, expression of granulysin was observed in rare cases of T cell lymphomas with a cytotoxic phenotype (i.e. ALK-negative anaplastic large cell lymphoma (26%), enteropathy-associated T cell lymphoma (12%) and peripheral T cell lymphoma, NOS (4%)). None of the investigated non-Hodgkin B cell lymphomas, Hodgkin lymphoma and plasma cell myeloma were granulysin positive. The results suggest granulysin as a novel marker for a subset of cytotoxic NK cell derived malignancies and its usefulness is highlighted in those ENKTLs that lack expression of other cytotoxic markers but retain granulysin expression

    Delisser\u27s horseman\u27s guide.

    No full text
    corecore