393 research outputs found
Process tomography of field damping and measurement of Fock state lifetimes by quantum non-demolition photon counting in a cavity
The relaxation of a quantum field stored in a high- superconducting cavity
is monitored by non-resonant Rydberg atoms. The field, subjected to repetitive
quantum non-demolition (QND) photon counting, undergoes jumps between photon
number states. We select ensembles of field realizations evolving from a given
Fock state and reconstruct the subsequent evolution of their photon number
distributions. We realize in this way a tomography of the photon number
relaxation process yielding all the jump rates between Fock states. The damping
rates of the photon states () are found to increase
linearly with . The results are in excellent agreement with theory including
a small thermal contribution
Reconstruction of non-classical cavity field states with snapshots of their decoherence
The state of a microscopic system encodes its complete quantum description, from which the probabilities of all measurement outcomes are inferred. Being a statistical concept, the state cannot be obtained from a single system realization, but can instea
Pulsed quantum optomechanics
Studying mechanical resonators via radiation pressure offers a rich avenue
for the exploration of quantum mechanical behavior in a macroscopic regime.
However, quantum state preparation and especially quantum state reconstruction
of mechanical oscillators remains a significant challenge. Here we propose a
scheme to realize quantum state tomography, squeezing and state purification of
a mechanical resonator using short optical pulses. The scheme presented allows
observation of mechanical quantum features despite preparation from a thermal
state and is shown to be experimentally feasible using optical microcavities.
Our framework thus provides a promising means to explore the quantum nature of
massive mechanical oscillators and can be applied to other systems such as
trapped ions.Comment: 9 pages, 4 figure
Determination of the vacuum optomechanical coupling rate using frequency noise calibration
The strength of optomechanical interactions in a cavity optomechanical system
can be quantified by a vacuum coupling rate \vcr analogous to cavity quantum
electrodynamics. This single figure of merit removes the ambiguity in the
frequently quoted coupling parameter defining the frequency shift for a given
mechanical displacement, and the effective mass of the mechanical mode. Here we
demonstrate and verify a straightforward experimental technique to derive the
vacuum optomechanical coupling rate. It only requires applying a known
frequency modulation of the employed electromagnetic probe field and knowledge
of the mechanical oscillator's occupation. The method is experimentally
verified for a micromechanical mode in a toroidal whispering-gallery-resonator
and a nanomechanical oscillator coupled to a toroidal cavity via its near
field.Comment: 11 pages, 2 figure
Measurements of the Correlation Function of a Microwave Frequency Single Photon Source
At optical frequencies the radiation produced by a source, such as a laser, a
black body or a single photon source, is frequently characterized by analyzing
the temporal correlations of emitted photons using single photon counters. At
microwave frequencies, however, there are no efficient single photon counters
yet. Instead, well developed linear amplifiers allow for efficient measurement
of the amplitude of an electromagnetic field. Here, we demonstrate how the
properties of a microwave single photon source can be characterized using
correlation measurements of the emitted radiation with such detectors. We also
demonstrate the cooling of a thermal field stored in a cavity, an effect which
we detect using a cross-correlation measurement of the radiation emitted at the
two ends of the cavity.Comment: 5 pages, 4 figure
Study of the Stabilization to the Nanometer Level of Mechanical Vibrations of the CLIC Main Beam
Original publication available at http://www.jacow.org/International audienceTo reach the design luminosity of CLIC, the movements of the quadrupoles should be limited to the nanometre level in order to limit the beam size and emittance growth. Below 1 Hz, the movements of the main beam quadrupoles will be corrected by a beambased feedback. But above 1 Hz, the quadrupoles should be mechanically stabilized. A collaboration effort is ongoing between several institutes to study the feasibility of the "nanostabilization" of the CLIC quadrupoles. The study described in this paper covers the characterization of independent measuring techniques including optical methods to detect nanometre sized displacements and analyze the vibrations. Actuators and feedback algorithms for sub-nanometre movements of magnets with a mass of more than 400 kg are being developed and tested. Input is given to the design of the quadrupole magnets, the supports and alignment system in order to limit the amplification of the vibration sources at resonant frequencies. A full scale mock-up integrating all these features is presently under design. Finally, a series of experiments in accelerator environments should demonstrate the feasibility of the nanometre stabilization
The Cherenkov Telescope Array Large Size Telescope
The two arrays of the Very High Energy gamma-ray observatory Cherenkov
Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with
a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA
to achieve a low-energy threshold of 20 GeV, which is critical for important
studies in astrophysics, astroparticle physics and cosmology. This work
presents the key specifications and performance of the current LST design in
the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
Image informatics strategies for deciphering neuronal network connectivity
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies
- …