236 research outputs found
Recommended from our members
What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades?
High populations of African cassava whitefly (Bemisia tabaci) have been associated with epidemics of two viral diseases in Eastern Africa. We investigated population dynamics and genetic patterns by comparing whiteflies collected on cassava in 1997, during the first whitefly upsurges in Uganda, with collections made in 2017 from the same locations. Nuclear markers and mtCOI barcoding sequences were used on 662 samples. The composition of the SSA1 population changed significantly over the 20-year period with the SSA1-SG2 percentage increasing from 0.9 to 48.6%. SSA1-SG1 and SSA1-SG2 clearly interbreed, confirming that they are a single biological species called SSA1. The whitefly species composition changed: in 1997, SSA1, SSA2 and B. afer were present; in 2017, no SSA2 was found. These data and those of other publications do not support the ‘invader’ hypothesis. Our evidence shows that no new species or new population were found in 20 years, instead, the distribution of already present genetic clusters composing SSA1 species have changed over time and that this may be in response to several factors including the introduction of new cassava varieties or climate changes. The practical implications are that cassava genotypes possessing both whitefly and disease resistances are needed urgently
Social sciences research in neglected tropical diseases 2: A bibliographic analysis
The official published version of the article can be found at the link below.Background
There are strong arguments for social science and interdisciplinary research in the neglected tropical diseases. These diseases represent a rich and dynamic interplay between vector, host, and pathogen which occurs within social, physical and biological contexts. The overwhelming sense, however, is that neglected tropical diseases research is a biomedical endeavour largely excluding the social sciences. The purpose of this review is to provide a baseline for discussing the quantum and nature of the science that is being conducted, and the extent to which the social sciences are a part of that.
Methods
A bibliographic analysis was conducted of neglected tropical diseases related research papers published over the past 10 years in biomedical and social sciences. The analysis had textual and bibliometric facets, and focussed on chikungunya, dengue, visceral leishmaniasis, and onchocerciasis.
Results
There is substantial variation in the number of publications associated with each disease. The proportion of the research that is social science based appears remarkably consistent (<4%). A textual analysis, however, reveals a degree of misclassification by the abstracting service where a surprising proportion of the "social sciences" research was pure clinical research. Much of the social sciences research also tends to be "hand maiden" research focused on the implementation of biomedical solutions.
Conclusion
There is little evidence that scientists pay any attention to the complex social, cultural, biological, and environmental dynamic involved in human pathogenesis. There is little investigator driven social science and a poor presence of interdisciplinary science. The research needs more sophisticated funders and priority setters who are not beguiled by uncritical biomedical promises
Exchange Rate Pass-Through into German Import Prices – A Disaggregated Perspective
This study analyzes the exchange rate pass-through into German import prices based on disaggregated data taken on a monthly basis between 1995 and 2012. Our main contribution is twofold: firstly, we employ various time-series techniques to analyze data for different product categories, and also cointegration techniques to carefully distinguish between short-run and long-run pass-through coefficients. Secondly, in a panel data approach we estimate time-varying pass-through coefficients and explain their development with regard to various macroeconomic factors. Our results show that long-run pass-through is only partly observable and incomplete, while short-run pass-through shows a more unique character, although heterogeneity across product groups does exist. We are also able to identify several macroeconomic factors which determine changes in the degree of pass-through, which is especially relevant for policymakers
Genome Sequencing of the Sweetpotato Whitefly \u3cem\u3eBemisia tabaci\u3c/em\u3e MED/Q
The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future \u27pan-genomic\u27 comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management
The NIDDK Central Repository at 8 years—Ambition, Revision, Use and Impact
The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repository makes data and biospecimens from NIDDK-funded research available to the broader scientific community. It thereby facilitates: the testing of new hypotheses without new data or biospecimen collection; pooling data across several studies to increase statistical power; and informative genetic analyses using the Repository’s well-curated phenotypic data. This article describes the initial database plan for the Repository and its revision using a simpler model. Among the lessons learned were the trade-offs between the complexity of a database design and the costs in time and money of implementation; the importance of integrating consent documents into the basic design; the crucial need for linkage files that associate biospecimen IDs with the masked subject IDs used in deposited data sets; and the importance of standardized procedures to test the integrity data sets prior to distribution. The Repository is currently tracking 111 ongoing NIDDK-funded studies many of which include genotype data, and it houses over 5 million biospecimens of more than 25 types including serum, plasma, stool, urine, DNA, red blood cells, buffy coat and tissue. Repository resources have supported a range of biochemical, clinical, statistical and genetic research (188 external requests for clinical data and 31 for biospecimens have been approved or are pending). Genetic research has included GWAS, validation studies, development of methods to improve statistical power of GWAS and testing of new statistical methods for genetic research. We anticipate that the future impact of the Repository’s resources on biomedical research will be enhanced by (i) cross-listing of Repository biospecimens in additional searchable databases and biobank catalogs; (ii) ongoing deployment of new applications for querying the contents of the Repository; and (iii) increased harmonization of procedures, data collection strategies, questionnaires etc. across both research studies and within the vocabularies used by different repositories
Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases
Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats
Chemical intervention in plant sugar signalling increases yield and resilience
The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function
New and Common Haplotypes Shape Genetic Diversity in Asian Tiger Mosquito Populations from Costa Rica and Panama
The Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), is a vector of several human pathogens. Ae. albopictus is also an invasive species that, over recent years, has expanded its range out of its native Asia. Ae. albopictus was suspected to be present in Central America since the 1990s, and its presence was confirmed by most Central American nations by 2010. Recently, this species has been regularly found, yet in low numbers, in limited areas of Panama and Costa Rica (CR). Here, we report that short sequences (?558 bp) of the mitochondrial cytochrome oxidase subunit 1 (COI) and NADH dehydrogenase subunit 5 genes of Ae. albopictus, had no haplotype diversity. Instead, there was a common haplotype for each gene in both CR and Panama. In contrast, a long COI sequence (?1,390 bp) revealed that haplotype diversity (±SD) was relatively high in CR (0.72 ± 0.04) when compared with Panama (0.33 ± 0.13), below the global estimate for reported samples (0.89 ± 0.01). The long COI sequence allowed us to identify seven (five new) haplotypes in CR and two (one new) in Panama. A haplotype network for the long COI gene sequence showed that samples from CR and Panama belong to a single large group. The long COI gene sequences suggest that haplotypes in Panama and CR, although similar to each other, had a significant geographic differentiation (Kst = 1.33; P < 0.001). Thus, most of our results suggest a recent range expansion in CR and Panama
- …