11,339 research outputs found

    A mechanism for fast radio bursts

    Get PDF
    Fast radio bursts are mysterious transient sources likely located at cosmological distances. The derived brightness temperatures exceed by many orders of magnitude the self-absorption limit of incoherent synchrotron radiation, implying the operation of a coherent emission process. We propose a radiation mechanism for fast radio bursts where the emission arises from collisionless Bremsstrahlung in strong plasma turbulence excited by relativistic electron beams. We discuss possible astrophysical scenarios in which this process might operate. The emitting region is a turbulent plasma hit by a relativistic jet, where Langmuir plasma waves produce a concentration of intense electrostatic soliton-like regions (cavitons). The resulting radiation is coherent and, under some physical conditions, can be polarised and have a power-law distribution in energy. We obtain radio luminosities in agreement with the inferred values for fast radio bursts. The timescale of the radio flare in some cases can be extremely fast, of the order of 10−310^{-3} s. The mechanism we present here can explain the main features of fast radio bursts and is plausible in different astrophysical sources, such as gamma-ray bursts and some Active Galactic Nuclei.Comment: 6 pages, 1 figure. Accepted for publication in Phys. Rev.

    Physics for non-physicists - Two bio-degrees reforms in Spanish universities: Health Biology and Biology

    Full text link
    We present a review of two different innovative experiences of Physics education for Bio-Sciences in two Spanish Universities - the Health Biology degree of the Universidad de Alcalá de Henares (UAH) and the Biology degree of the Universidad Autónoma de Madrid (UAM). Both experiences took place simultaneously and coincident with the implementation of Bologna Plan. Although they were developed under different contextual constraints, set by the respective Faculties, they share a number of similar pedagogical strategies which are analyzed. In both cases the reforms allowed a substantial improvement in learning results compared to those obtained in the previous Physics courses in the respective degreesLHM participated in the GIREP-MPTL 2018 on behalf of the project IPLS-Spain, promoted and supported by an inter-university group of physics teachers and young biologist

    Probabilistic Guarded P Systems, A New Formal Modelling Framework

    Get PDF
    Multienvironment P systems constitute a general, formal framework for modelling the dynamics of population biology, which consists of two main approaches: stochastic and probabilistic. The framework has been successfully used to model biologic systems at both micro (e.g. bacteria colony) and macro (e.g. real ecosystems) levels, respectively. In this paper, we extend the general framework in order to include a new case study related to P. Oleracea species. The extension is made by a new variant within the probabilistic approach, called Probabilistic Guarded P systems (in short, PGP systems). We provide a formal definition, a simulation algorithm to capture the dynamics, and a survey of the associated software.Ministerio de Economía y Competitividad TIN2012- 37434Junta de Andalucía P08-TIC-0420

    High-energy radiation from collisions of high-velocity clouds and the Galactic disc

    Get PDF
    High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.Facultad de Ciencias Astronómicas y Geofísica

    Evaluation of the power frequency magnetic field generated by three-core armored cables through 3D finite element simulations

    Get PDF
    The great expansion in offshore power plants is raising the concern regarding the cumulative effect of the electromagnetic field emissions caused by submarine power cables. In this sense, owners are required to predict these emissions during the permitting and consenting process of new power plants. This is a challenging task, especially in the case of HVAC three-core armored cables due to their complex geometry. Customarily, 2D approaches based on the finite element method (FEM) have been employed for evaluating the magnetic field emissions caused by these cables. However, inaccurate results are obtained since the phase conductors and armor twisting is omitted. This work develops, for the first time in the literature, an in-depth analysis of the magnetic field caused by this type of cable through an ultra-shortened 3D-FEM model, which is also faced to experimental measurements taken on an actual 132 kV, 800 mm2 three-core armored cable. Relevant conclusions are derived regarding the impact of the cable design on the magnetic field emissions, including material properties, as well as single and double-layer armors, presenting the proposed model not only as a valuable tool for predicting purposes, but also for optimizing cable design in terms of magnetic field emissions

    Multi-zone non-thermal radiative model for stellar bowshocks

    Get PDF
    Context. Runaway stars produce bowshocks that are usually observed at infrared (IR) wavelengths. Non-thermal radio emission has been detected so far only from the bowshock of BD+43°3654, whereas the detection of non-thermal radiation from these bowshocks at high energies remains elusive. Aims. We aim at characterising in detail the radio, X-ray, and γ-ray emission from stellar bowshocks accounting for the structure of the region of interaction between the stellar wind and its environment. Methods. We develop a broadband-radiative, multi-zone model for stellar bowshocks that takes into account the spatial structure of the emitting region and the observational constraints. The model predicts the evolution and the emission of the relativistic particles accelerated and streaming together with the shocked flow. Results. We present broadband non-thermal spectral energy distributions for different scenarios, synthetic radio-cm synchrotron maps that reproduce the morphology of BD+43°3654, and updated predictions in X-ray and γ-ray energy ranges. We also compare the results of the multi-zone model applied in this work with those of a refined one-zone model. Conclusions. A multi-zone model provides better constraints than a one-zone model on the relevant parameters, namely the magnetic field intensity and the amount of energy deposited in non-thermal particles. However, one-zone models can be improved by carefully characterising the intensity of the IR dust photon field and the escape rate of the plasma from the shocked region. Finally, comparing observed radio maps with those obtained from a multi-zone model enables constraints to be obtained on the direction of stellar motion with respect to the observer

    NGC 6705 a young α\alpha-enhanced Open Cluster from OCCASO data

    Full text link
    The stellar [α\alpha/Fe] abundance is sometimes used as a proxy for stellar age, following standard chemical evolution models for the Galaxy, as seen by different observational results. In this work we show that the Open Cluster NGC6705/M11 has a significant α\alpha-enhancement [α\alpha/Fe]>0.1>0.1 dex, despite its young age (∼\sim300 Myr), challenging the current paradigm. We use high resolution (R>65,000>65,000) high signal-to-noise (∼\sim70) spectra of 8 Red Clump stars, acquired within the OCCASO survey. We determine very accurate chemical abundances of several α\alpha elements, using an equivalent width methodology (Si, Ca and Ti), and spectral synthesis fits (Mg and O). We obtain [Si/Fe]=0.13±0.050.13\pm0.05, [Mg/Fe]=0.14±0.070.14\pm0.07, [O/Fe]=0.17±0.070.17\pm0.07, [Ca/Fe]=0.06±0.050.06\pm0.05 and [Ti/Fe]=0.03±0.030.03\pm0.03. Our results place these cluster within the group of young [α\alpha/Fe]-enhanced field stars recently found by several authors in the literature. The ages of our stars have an uncertainty of around 50 Myr, much more precise than for field stars. By integrating the cluster's orbit in several non-axisymmetric Galactic potentials, we establish the M11's most likely birth radius to lie between 6.8-7.5 kpc from the Galactic center, not far from its current position. With the robust Open Cluster age scale, our results prove that a moderate [α\alpha/Fe]-enhancement is no guarantee for a star to be old, and that not all α\alpha-enhanced stars can be explained with an evolved blue straggler scenario. Based on our orbit calculations, we further argue against a Galactic bar origin of M11.Comment: 10 pages, 6 figures, accepted in A&

    Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning

    Full text link
    [EN] A great challenge in osteoporosis clinical assessment is identifying patients at higher risk of hip fracture. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold-standard, but its classification accuracy is limited to 65%. DXA-based Finite Element (FE) models have been developed to predict the mechanical failure of the bone. Yet, their contribution has been modest. In this study, supervised machine learning (ML) is applied in conjunction with clinical and computationally driven mechanical attributes. Through this multi-technique approach, we aimed to obtain a predictive model that outperforms BMD and other clinical data alone, as well as to identify the best-learned ML classifier within a group of suitable algorithms. A total number of 137 postmenopausal women (81.4 +/- 6.95 years) were included in the study and separated into a fracture group (n = 89) and a control group (n = 48). A semi-automatic and patient-specific DXA-based FE model was used to generate mechanical attributes, describing the geometry, the impact force, bone structure and mechanical response of the bone after a sideways-fall. After preprocessing the whole dataset, 19 attributes were selected as predictors. Support Vector Machine (SVM) with radial basis function (RBF), Logistic Regression, Shallow Neural Networks and Random Forest were tested through a comprehensive validation procedure to compare their predictive performance. Clinical attributes were used alone in another experimental setup for the sake of comparison. SVM was confirmed to generate the best-learned algorithm for both experimental setups, including 19 attributes and only clinical attributes. The first, generated the best-learned model and outperformed BMD by 14pp. The results suggests that this approach could be easily integrated for effective prediction of hip fracture without interrupting the actual clinical workflow.This study was partially funded by two grants Catedra UPVFundacion Quaes, obtained by Eduardo Villamor Medina and Antonio Cutillas Pardines, and one FPI grant (FPI-SP20170111) from the Universitat Politecnica de Valencia obtained by Eduardo Villamor Medina.Villamor, E.; Monserrat Aranda, C.; Del Río, L.; Romero-Martín, J.; Rupérez Moreno, MJ. (2020). Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. Computer Methods and Programs in Biomedicine. 193:1-11. https://doi.org/10.1016/j.cmpb.2020.105484S111193Holt, G., Smith, R., Duncan, K., Hutchison, J. D., & Reid, D. (2009). Changes in population demographics and the future incidence of hip fracture. Injury, 40(7), 722-726. doi:10.1016/j.injury.2008.11.004Cooper, C., Campion, G., & Melton, L. J. (1992). Hip fractures in the elderly: A world-wide projection. Osteoporosis International, 2(6), 285-289. doi:10.1007/bf01623184Cooper, C., Atkinson, E. J., Jacobsen, S. J., O’Fallon, W. M., & Melton, L. J. (1993). Population-Based Study of Survival after Osteoporotic Fractures. American Journal of Epidemiology, 137(9), 1001-1005. doi:10.1093/oxfordjournals.aje.a116756Geusens, P., van Geel, T., & van den Bergh, J. (2010). Can hip fracture prediction in women be estimated beyond bone mineral density measurement alone? Therapeutic Advances in Musculoskeletal Disease, 2(2), 63-77. doi:10.1177/1759720x09359541El Maghraoui, A., & Roux, C. (2008). DXA scanning in clinical practice. QJM, 101(8), 605-617. doi:10.1093/qjmed/hcn022Chevalley, T., Rizzoli, R., Nydegger, V., Slosman, D., Tkatch, L., Rapin, C.-H., … Bonjour, J.-P. (1991). Preferential low bone mineral density of the femoral neck in patients with a recent fracture of the proximal femur. Osteoporosis International, 1(3), 147-154. doi:10.1007/bf01625444Li, N., Li, X., Xu, L., Sun, W., Cheng, X., & Tian, W. (2013). Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. International Journal of Endocrinology, 2013, 1-5. doi:10.1155/2013/895474Fountoulis, G., Kerenidi, T., Kokkinis, C., Georgoulias, P., Thriskos, P., Gourgoulianis, K., … Vlychou, M. (2016). Assessment of Bone Mineral Density in Male Patients with Chronic Obstructive Pulmonary Disease by DXA and Quantitative Computed Tomography. International Journal of Endocrinology, 2016, 1-6. doi:10.1155/2016/6169721Yang, L., Palermo, L., Black, D. M., & Eastell, R. (2014). Prediction of Incident Hip Fracture with the Estimated Femoral Strength by Finite Element Analysis of DXA Scans in the Study of Osteoporotic Fractures. Journal of Bone and Mineral Research, 29(12), 2594-2600. doi:10.1002/jbmr.2291Dall’Ara, E., Eastell, R., Viceconti, M., Pahr, D., & Yang, L. (2016). Experimental validation of DXA-based finite element models for prediction of femoral strength. Journal of the Mechanical Behavior of Biomedical Materials, 63, 17-25. doi:10.1016/j.jmbbm.2016.06.004Enns-Bray, W. S., Bahaloo, H., Fleps, I., Pauchard, Y., Taghizadeh, E., Sigurdsson, S., … Helgason, B. (2019). Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone, 120, 25-37. doi:10.1016/j.bone.2018.09.014Terzini, M., Aldieri, A., Rinaudo, L., Osella, G., Audenino, A. L., & Bignardi, C. (2019). Improving the Hip Fracture Risk Prediction Through 2D Finite Element Models From DXA Images: Validation Against 3D Models. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00220Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A., & Nguyen, T. V. (2008). Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporosis International, 19(10), 1431-1444. doi:10.1007/s00198-008-0588-0Kanis, J. A., Oden, A., Johansson, H., Borgström, F., Ström, O., & McCloskey, E. (2009). FRAX® and its applications to clinical practice. Bone, 44(5), 734-743. doi:10.1016/j.bone.2009.01.373Bolland, M. J., Siu, A. T., Mason, B. H., Horne, A. M., Ames, R. W., Grey, A. B., … Reid, I. R. (2011). Evaluation of the FRAX and Garvan fracture risk calculators in older women. Journal of Bone and Mineral Research, 26(2), 420-427. doi:10.1002/jbmr.215Kruse, C., Eiken, P., & Vestergaard, P. (2016). Clinical fracture risk evaluated by hierarchical agglomerative clustering. Osteoporosis International, 28(3), 819-832. doi:10.1007/s00198-016-3828-8Nishiyama, K. K., Ito, M., Harada, A., & Boyd, S. K. (2013). Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporosis International, 25(2), 619-626. doi:10.1007/s00198-013-2459-6Jiang, P., Missoum, S., & Chen, Z. (2015). Fusion of clinical and stochastic finite element data for hip fracture risk prediction. Journal of Biomechanics, 48(15), 4043-4052. doi:10.1016/j.jbiomech.2015.09.044Naylor, K. E., McCloskey, E. V., Eastell, R., & Yang, L. (2013). Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. Journal of Bone and Mineral Research, 28(5), 1014-1021. doi:10.1002/jbmr.1856Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for Biomechanics. Journal of Biomechanical Engineering, 134(1). doi:10.1115/1.4005694Rossman, T., Kushvaha, V., & Dragomir-Daescu, D. (2015). QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Computer Methods in Biomechanics and Biomedical Engineering, 19(2), 208-216. doi:10.1080/10255842.2015.1006209Si, H. (2015). TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Transactions on Mathematical Software, 41(2), 1-36. doi:10.1145/2629697Yang, L., Peel, N., Clowes, J. A., McCloskey, E. V., & Eastell, R. (2009). Use of DXA-Based Structural Engineering Models of the Proximal Femur to Discriminate Hip Fracture. Journal of Bone and Mineral Research, 24(1), 33-42. doi:10.1359/jbmr.080906Schileo, E., Dall’Ara, E., Taddei, F., Malandrino, A., Schotkamp, T., Baleani, M., & Viceconti, M. (2008). An accurate estimation of bone density improves the accuracy of subject-specific finite element models. Journal of Biomechanics, 41(11), 2483-2491. doi:10.1016/j.jbiomech.2008.05.017Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. doi:10.1016/s0021-9290(01)00011-2Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus–density relationships depend on anatomic site. Journal of Biomechanics, 36(7), 897-904. doi:10.1016/s0021-9290(03)00071-xBayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4Ün, K., Bevill, G., & Keaveny, T. M. (2006). The effects of side-artifacts on the elastic modulus of trabecular bone. Journal of Biomechanics, 39(11), 1955-1963. doi:10.1016/j.jbiomech.2006.05.012Schileo, E., Balistreri, L., Grassi, L., Cristofolini, L., & Taddei, F. (2014). To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? Journal of Biomechanics, 47(14), 3531-3538. doi:10.1016/j.jbiomech.2014.08.024Wirtz, D. C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., & Forst, R. (2000). Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Journal of Biomechanics, 33(10), 1325-1330. doi:10.1016/s0021-9290(00)00069-5Eckstein, F., Wunderer, C., Boehm, H., Kuhn, V., Priemel, M., Link, T. M., & Lochmüller, E.-M. (2003). Reproducibility and Side Differences of Mechanical Tests for Determining the Structural Strength of the Proximal Femur. Journal of Bone and Mineral Research, 19(3), 379-385. doi:10.1359/jbmr.0301247Orwoll, E. S., Marshall, L. M., Nielson, C. M., Cummings, S. R., Lapidus, J., … Cauley, J. A. (2009). Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men. Journal of Bone and Mineral Research, 24(3), 475-483. doi:10.1359/jbmr.081201Choi, W. J., Cripton, P. A., & Robinovitch, S. N. (2014). Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporosis International, 26(1), 291-301. doi:10.1007/s00198-014-2812-4Van den Kroonenberg, A. J., Hayes, W. C., & McMahon, T. A. (1995). Dynamic Models for Sideways Falls From Standing Height. Journal of Biomechanical Engineering, 117(3), 309-318. doi:10.1115/1.2794186Robinovitch, S. N., Hayes, W. C., & McMahon, T. A. (1991). Prediction of Femoral Impact Forces in Falls on the Hip. Journal of Biomechanical Engineering, 113(4), 366-374. doi:10.1115/1.2895414Robinovitch, S. N., McMahon, T. A., & Hayes, W. C. (1995). Force attenuation in trochanteric soft tissues during impact from a fall. Journal of Orthopaedic Research, 13(6), 956-962. doi:10.1002/jor.1100130621Dufour, A. B., Roberts, B., Broe, K. E., Kiel, D. P., Bouxsein, M. L., & Hannan, M. T. (2011). The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporosis International, 23(2), 513-520. doi:10.1007/s00198-011-1569-2Schileo, E., Taddei, F., Cristofolini, L., & Viceconti, M. (2008). Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Journal of Biomechanics, 41(2), 356-367. doi:10.1016/j.jbiomech.2007.09.009Mautalen, C. A., Vega, E. M., & Einhorn, T. A. (1996). Are the etiologies of cervical and trochanteric hip fractures different? Bone, 18(3), S133-S137. doi:10.1016/8756-3282(95)00490-4Yang, S., Leslie, W. D., Luo, Y., Goertzen, A. L., Ahmed, S., Ward, L. M., … Lix, L. M. (2017). Automated DXA-based finite element analysis for hip fracture risk stratification: a cross-sectional study. Osteoporosis International, 29(1), 191-200. doi:10.1007/s00198-017-4232-8Testi, D., Viceconti, M., Cappello, A., & Gnudi, S. (2002). Prediction of Hip Fracture Can Be Significantly Improved by a Single Biomedical Indicator. Annals of Biomedical Engineering, 30(6), 801-807. doi:10.1114/1.1495866Langton, C. M., Pisharody, S., & Keyak, J. H. (2008). Generation of a 3D proximal femur shape from a single projection 2D radiographic image. Osteoporosis International, 20(3), 455-461. doi:10.1007/s00198-008-0665-4Humbert, L., Martelli, Y., Fonolla, R., Steghofer, M., Di Gregorio, S., Malouf, J., … Barquero, L. M. D. R. (2017). 3D-DXA: Assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images. IEEE Transactions on Medical Imaging, 36(1), 27-39. doi:10.1109/tmi.2016.2593346Keyak, J. H., Sigurdsson, S., Karlsdottir, G., Oskarsdottir, D., Sigmarsdottir, A., Zhao, S., … Lang, T. F. (2011). Male–female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone, 48(6), 1239-1245. doi:10.1016/j.bone.2011.03.682Lobo, E., Marcos, G., Santabárbara, J., Salvador-Rosés, H., Lobo-Escolar, L., De la Cámara, C., … Lobo-Escolar, A. (2017). Gender differences in the incidence of and risk factors for hip fracture: A 16-year longitudinal study in a southern European population. Maturitas, 97, 38-43. doi:10.1016/j.maturitas.2016.12.00

    Possible Association of Two Stellar Bowshocks with Unidentified <i>Fermi</i> Sources

    Get PDF
    The bowshocks of runaway stars had been theoretically proposed as gamma-ray sources. However, this hypothesis has not been confirmed by observations to date. In this paper, we present two runaway stars (λ Cep and LS 2355) whose bowshocks are coincident with the unidentified Fermi gamma-ray sources 3FLG J2210.1+5925 and 3FGL J1128.7-6232, respectively. After performing a cross-correlation between different catalogs at distinct wavelengths, we found that these bowshocks are the most peculiar objects in the Fermi position ellipses. Then we computed the inverse Compton emission and fitted the Fermi data in order to test the viability of both runaway stars as potential counterparts of the two high-energy sources. We obtained very reasonable values for the fitted parameters of both stars. We also evaluated the possibility for the source 3FGL J1128.7-6232, which is positionally coincident with a H II region, to be the result of background cosmic-ray protons interacting with the matter of the cloud, as well as the probability of a pure chance association. We conclude that the gamma rays from these Fermi sources might be produced in the bowshocks of the considered runaway stars. In such a case, these would be the first sources of this class ever detected at gamma rays.Facultad de Ciencias Astronómicas y Geofísica

    On the multiwavelength spectrum of the microquasar 1E 1740.7-2942

    Get PDF
    Context. The microquasar 1E 1740.7-2942 is a source located in the direction of the Galactic Center. It has been detected at X-rays, soft gamma-rays, and in the radio band, showing an extended radio component in the form of a double-sided jet. Although no optical counterpart has been found so far for IE 1740.7-2942, its X-ray activity strongly points to a galactic nature. Aims. We aim to improve our understanding of the hard X-ray and gamma-ray production in the system, exploring whether the jet can emit significantly at high energies under the light of the present knowledge. Methods. We have modeled the source emission, from radio to gamma-rays, with a cold-matter dominated jet model. INTEGRAL data combined with radio and RXTE data, as well as EGRET and HESS upper-limits, are used to compare the computed and the observed spectra. Results. From our modeling, we find out that jet emission cannot explain the high fluxes observed at hard X-rays without violating at the same time the constraints from the radio data, favoring the corona origin of the hard X-rays. Also, 1E 1740.7-2942 might be detected by GLAST or AGILE at GeV energies, and by HESS and HESS-II beyond 100 GeV, with the spectral shape likely affected by photon-photon absorption in the disk and corona photon fields.Facultad de Ciencias Astronómicas y Geofísica
    • …
    corecore