
Probabilistic Guarded P Systems, A New
Formal Modelling Framework

Manuel Garćıa-Quismondo, Miguel A. Mart́ınez-del-Amor, and
Mario J. Pérez-Jiménez

Research Group on Natural Computing,

Department of Computer Science and Artificial Intelligence,

University of Seville, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{mgarciaquismondo,mdelamor,marper}@us.es

Abstract. Multienvironment P systems constitute a general, formal
framework for modelling the dynamics of population biology, which con-
sists of two main approaches: stochastic and probabilistic. The framework
has been successfully used to model biologic systems at both micro (e.g.
bacteria colony) and macro (e.g. real ecosystems) levels, respectively.

In this paper, we extend the general framework in order to include
a new case study related to P. Oleracea species. The extension is made
by a new variant within the probabilistic approach, called Probabilistic
Guarded P systems (in short, PGP systems). We provide a formal defi-
nition, a simulation algorithm to capture the dynamics, and a survey of
the associated software.

Keywords: Modelling Framework · Multienvironment P systems · Prob-

abilistic Guarded P systems

1 Introduction

Since P systems were introduced in 1998 [19], they have been utilised as a high
level computational modelling framework [10,20]. Their main advantage is the
integration of the structural and dynamical aspects of complex systems in a
comprehensive and relevant way, while providing the required formalisation to
perform mathematical and computational analysis [2].

In this respect, multienvironment P systems are a general formal frame-
work for population dynamics modelling in biology [7]. This framework has two
approaches: stochastic and probabilistic. Stochastic approach is usually applied
to model micro-level systems (such as bacteria colonies), whereas the probabilis-
tic approach is normally used for macro-level modelling (real ecosystems, for
example). Population Dynamics P systems [2,3,16,17] (PDP systems, in short)
are a variant of multienvironment P systems, in the probabilistic approach. PDP
systems have been successfully applied to ecological modelling, specially with real
ecosystems of some endanger [3,6] and exotic species [3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/222572372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we introduce a brand new variant inside the probabilistic app-
roach of multienvironment P systems: Probabilistic Guarded P systems (PGP
systems, for short). They are specifically oriented for ecological processes. PGP
systems are a computational probabilistic framework which takes inspiration
from different Membrane Computing paradigms, mainly from tissue–like P sys-
tems [23], PDP systems [2] and Kernel P systems [12]. This framework aims for
simplicity, considering these aspects:

Model designers: In PGP systems, model designers do not need to worry
about context consistency. That is to say, they do not need to take into
account that all rules simultaneously applied in a elementary processor of
the system (referred as a cell) must define the same polarization in the right–
hand side [16]. This is because the framework centralizes all context changes
in a single rule per cycle, rather than distributing them across all rules.
Therefore, there exist two types of rules: context–changing rules and non
context–changing rules. Due to the nature of the model, only one of such
rules can be applied at the same time on each cell, so context inconsistency
is not possible. Moreover, the fact that the context is explicitly expressed in
each cell and that cells do not contain internal cell structures simplifies tran-
sitions between contexts without loss of computational or modelling power.

Simulator developers: The fact that the framework implicitly takes care of
context consistency simplifies the development of simulators for these mod-
els, as it is a non–functional requirement which does not need to be supported
by simulators. In addition, the lack of internal structure in cells simplifies
the simulation of object transmission; the model can be regarded as a set
of memory regions with no hierarchical arrangement, thus enabling direct
region fetching.

Probabilistic Guarded P Systems can be seen as an extension of Population
Dynamic P systems. In this context, PGP systems propose a modelling frame-
work for ecology in which inconsistency (that is to say, undefined context of
membranes) is handled by the framework itself, rather than delegating to si-
mulation algorithms. In addition, by replacing alien concepts to biology (such as
electrical polarizations and internal compartment hierarchies) by state variables
known as flags and defined by designers models seem more natural to experts,
thus simplifying communication between expert and designer.

This paper is structured as follows. Section 2 introduces some preliminar-
ies. The formal framework of multienvironment P systems, and the two main
approaches, are shown in Section 3. Section 4 describes the framework of PGP
systems, providing a formal definition, some remarks about the semantics of the
model, and a comparison with other similar frameworks of Membrane Comput-
ing. Section 5 provides a simulation algorithm, and a software environment based
on P–Lingua and a C++ simulator. Section 6 summarizes an ecosystem under
study with PGP systems. Finally, Section 7 ends the paper with conclusions and
future work.

2 Preliminaries

An alphabet Γ is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols of Γ is a string or word over Γ . As usual, the empty
string (with length 0) will be denoted by λ. The set of all strings over an alphabet
Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset m over an alphabet Γ is a pair m = (Γ, f) where f : Γ → N is
a mapping. For each x ∈ Γ we say that f(x) is the multiplicity of the symbol x
in m. If m = (Γ, f) is a multiset, then its support is defined as supp(m) = {x ∈
Γ | f(x) > 0}. A multiset is finite if its support is a finite set. A set is a multiset
such that the multiplicity of each element of its support, is equal to 1.

If m = (Γ, f) is a finite multiset over Γ , and supp(m) = {a1, . . . , ak} then
it will be denoted as m = a

f(a1)
1 . . . a

f(ak)
k (here the order is irrelevant), and we

say that f(a1) + · · · + f(ak) is the cardinal of m, denoted by |m|. The empty
multiset is denoted by ∅. We also denote by Mf (Γ) the set of all finite multisets
over Γ .

Let m1 = (Γ, f1) and m2 = (Γ, f2) multisets over Γ . We define the following
concepts:

– The union of m1 and m2, denoted by m1 + m2 is the multiset (Γ, g), where
g = f1 + f2, that is, g(x) = f1(x) + f2(x) for each x ∈ Γ .

– The relative complement of m2 in m1, denoted by m1 \ m2 is the multiset
(Γ, g), where g = f1(x) − f2(x) if f1(x) ≥ f2(x) and g(x) = 0 otherwise.

We also say that m1 is a submultiset of m2, denoted by m1 ⊆ m2, if f1(x) ≤ f2(x)
for each x ∈ Γ .

Let m = (Γ, f) a multiset over Γ and A a set. We define the intersection
m∩A as the multiset (Γ, g), where g(x) = f(x) for each x ∈ Γ ∩A, and g(x) = 0
otherwise.

3 (Extended) Multienvironment P Systems

Definition 1. A (extended) multienvironment P system of degree (m,n, q) with
q ≥ 1, m ≥ 1, n ≥ 0, taking T time units, T ≥ 1, is a tuple

Π =(G, Γ, Σ, Φ, μ, T, n =

m∑

j=1

nj , {Πk,j | 1 ≤ k ≤ nj , 1 ≤ j ≤ m}, {Aj | 1 ≤ j ≤ m}, RE)

where:

– G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are
called environments;

– Γ,Σ and Φ are finite alphabets such that Σ � Γ and Γ ∩ Φ = ∅.
– μ is a rooted tree with q ≥ 1 nodes labelled by elements from {1, . . . , q} ×

{0,+,−}.
– n =

∑m
j=1 nj, with nj ≥ 0

– For each k (1 ≤ k ≤ nj , 1 ≤ j ≤ m), Πk,j is a tuple (Γ, μ,Mk
1,j , . . . ,

Mk
q,j ,Rk

j , iin), where:
• For each i, 1 ≤ i ≤ q, Mk

i,j ∈ Mf (Γ).
• Rk

j is a finite set of rules of the type: u[v]αi
p−→ u′[v′]α

′
i , being u, v, u′, v′ ∈

Mf (Γ), 1 ≤ i ≤ q, α, α′ ∈ {0,+,−} and p is a real computable function
whose domain is {0, . . . , T}.

• iin is a node from μ.
Let us note that nj can be eventually 0, so that there would not exist any
Πk,j for such an environment j.

– For each j, 1 ≤ j ≤ m, fj ∈ Φ and Ej ∈ Mf (Σ).
– RE is a finite set of rules among environments of the types:

(x)ej

p1−→ (y1)ej1
· · · (yh)ejh

(Πk,j)ej

p2−→ (Πk,j)ej1

{f} (u)ej

p3−→ (v)ej1
{f} (u, f)ej

p4−→ (v, g)ej

being x, y1, . . . yh ∈ Σ, (ej , eji) ∈ S, 1 ≤ j ≤ m, 1 ≤ i ≤ h, 1 ≤ k ≤ n, f, g ∈
Φ, u, v ∈ Mf (Γ) and p1, p2, p3, p4 are computable functions whose domain is
{0, . . . , T}.

– For each j, 1 ≤ j ≤ m, Aj ∈ Mf (Σ ∪ Φ).

A (extended) multienvironment P system of degree (m,n, q) can be viewed
as a set of m environments e1, . . . , em, n systems Πk,j of order q, and a set
Φ of flags, in such a way that: (a) the links between the m environments are
given by the arcs from the directed graph G; (b) each environment has a flag
from Φ at any instant; (c) all P systems have the same working alphabet, the
same membrane structure and the same evolution rules; (d) each environment
ej contains several P systems, Π1,j , . . . , Πnj ,j , where each evolution rule has
associated a computable function pj , and each one of them has an initial multiset
which depends on j. Furthermore, inside the environments, only objects from
the alphabet Σ can exist; that is, there are symbols from the working alphabet
that cannot circulate through the environments.

A configuration of the system at any instant t is a tuple whose components
are the following: (a) the flags associated with each environment at instant t
(initially f1, . . . , fm); (b) the multisets of objects present in the m environments
at instant t (initially E1, . . . , Em); and (c) the multisets of objects associated with
each of the regions of each P system Πk,j (initially Mk

1,j , . . . ,Mk
q,j), together

with the polarizations of their membranes (initially all membranes have a neutral
polarization).

We assume that a global clock exists, marking the time for the whole system,
that is, all membranes and the application of all rules (both from RE and Rk

j , 1 ≤
k ≤ nj , nj ≥ 0) are synchronized in all environments. We will denote the set of
all defined rules in the system as R.

The P system can pass from one configuration to another by using the rules
from R as follows: at each transition step, the rules to be applied are selected
according to the probabilities assigned to them, and all applicable rules are
simultaneously applied.

A rule of the type u[v]αi
p−→ u′[v′]α

′
i is applicable to a configuration at any

instant t if the following is satisfied: in that configuration membrane i has polar-
ization α, contains multiset v and its parent (the environment if the membrane
is the skin membrane) contains multiset u. When that rule is applied, multi-
sets u, v produce u′, v′, respectively, and the new polarization is α′ (the value of
function p in that moment provide the affinity of the application of that rule).
For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to apply several rules of Rk

j simultaneously to
the same membrane, all the rules must have the same electrical charge on their
right-hand side.

A rule of the environment of the type (x)ej

p1−→ (y1)ej1
· · · (yh)ejh

is applicable
to a configuration at any instant t if the following is satisfied: in that configura-
tion environment ej contains object x. When that rule is applied, object x passes
from ej to ej1 , . . . , ejh possibly transformed into objects y1, . . . , yh, respectively
(the value of function p1 in that moment provide the affinity of the application
of that rule).

A rule of the environment of the type (Πk,j)ej

p2−→ (Πk,j)ej′ : is applicable to
a configuration at any instant t if the following is satisfied: in that configuration
environment ej contains the P system Πk,j . When that rule is applied, the system
Πk,j passes from environment ej to environment ej′ (the value of function p2 in
that moment provide the affinity of the application of that rule).

A rule of the environment of the type {f} (u)ej

p3−→ (v)ej1
, where ej1 can

be equal to ej or not, is applicable to a configuration at any instant t if the
following is satisfied: in that configuration environment ej has flag f and contains
the multiset u. When that rule is applied multiset u produces multiset v and
environment ej keep the same flag. This kind of rule can be applied many times
in a computation step. The value of function p3 in that moment provide the
affinity of the application of that rule.

A rule of the environment of the type {f} (u, f)ej

p4−→ (v, g)ej
is applicable to

a configuration at any instant t if the following is satisfied: in that configuration
environment ej has flag f and contains the multiset u. When that rule is applied
multiset u produces multiset v and flag f of environment ej is replaced by flag
g. Bearing in mind that each environment only has a flag in any instant, this
kind of rules can only be applied once in any moment.

Next, we depict the two approaches (stochastic and probabilistic) for multi-
environment P systems.

3.1 Stochastic Approach

We say that a multienvironment P system has a stochastic approach if the fol-
lowing holds:

(a) The alphabet of flags, Φ, is an empty set.
(b) The computable functions associated with the rules of the P systems are

propensities (obtained from the kinetic constants) [22]: These rules is func-
tion of the time but they do not depend on the environment.

(c) Initially, the P systems Πk,j are randomly distributed among the m envi-
ronments of the system.

Multicompartmental P Systems. Multicompartmental P systems are mul-
tienvironment P systems with a stochastic approach which can be formally
expressed as follows:

Π = (G, Γ, Σ, T, n =
m∑

j=1

nj , {Πk,j | 1 ≤ k ≤ nj , 1 ≤ j ≤ m}, {Ej | 1 ≤ j ≤ m}, RE)

These systems can be viewed as a set of m environment connected by the arcs of
a directed graph G. Each environment ej only can contains P systems of the type
Πk,j . The total number of P systems is n, all of them with the same skeleton.
The functions associated with the rules of the system are propensities which are
computed as follows: stochastic constants are computed from kinetic constants
by applying the mass action law, and the propensities are obtained from the
stochastic constants by using the concentration of the objects in the LHS at any
instant. In these systems there are rules of the following types:

1. u[v]αi
p−→ u′[v′]α

′
i

2. (x)ej

p1−→ (y1)ej1
· · · (yh)ejh

3. (Πk,j)ej

p2−→ (Πk,j)ej′

The dynamics of these systems is captured by the multicompartmental Gille-
spie’s algorithm [22] or the deterministic waiting time [4]. Next, some prac-
tical examples of multicompartmental P systems applications are highlighted:
Quorum sensing in Vibrio Fischeri [24], gene expression control in Lac Operon
[25], and FAS-induced apoptosis [4]. A software environment supporting this
model is Infobiotics Workbench [1], which provides (in version 0.0.1): a modelling
language, a multi-compartmental stochastic simulator based on Gillespie’s
Stochastic Simulation Algorithm, a formal model analysis, and a structural and
parameter model optimisation.

3.2 Probabilistic Approach

We say that a multienvironment P system has a probabilistic approach if the
following holds:

(a) The total number of P systems Πk,j is, at most, the number m of environ-
ment, that is, n ≤ m.

(b) Functions pr associated with rule r ≡ u[v]αi
pr−→ u′[v′]α

′
i from Πk,j are

probability functions such that for each u, v ∈ Mf (Γ), i ∈ {1, . . . , q},
α ∈ {0,+,−}, if r1, . . . , rz are the rules in Rk

j whose LHS is u [v]αi , then
z∑

j=1

prj
(t) = 1, for each t (1 ≤ t ≤ T).

(c) Functions p1 associated with the rules of the environment (x)ej

p1−→
(y1)ej1

· · · (yh)ejh
are probability functions such that for each x ∈ Σ and

each environment ej , the sum of all functions associated with the rules whose
LHS is (x)ej

, is equal to 1.
(d) Functions p2 associated with the rules of the environment (Πk,j)ej

p2−→
(Πk,j)ej′ are constant functions equal to 0; that is, these rules will never
be applied.

(e) Functions p3 associated with the rules of the environment {f} (u)ej

p3−→
(v)ej1

are probability functions.
(f) Functions p4 associated with the rules of the environment {f} (u, f)ej

p4−→
(v, g)ej

are constant functions equal to 1.
(g) There exist no rules u[v]αi

p−→ u′[v′]α
′

i in the skin membrane of Πk,j and
rules of the environment (x)ej

p1−→ (y1)ej1
· · · (yh)ejh

such that x ∈ u.
(h) Initially, each environment ej contains at most one P system Πk,j .

Population Dynamics P Systems (PDP). Population Dynamics P systems
are multienvironment P systems with a probabilistic approach such that the
alphabet Φ of the flags is an empty set and n = m, that is, the environment
has not any flag and the total number n of P systems are equal to the number
m of environments. Then in a PDP system Π each environment ej contains
exactly one P system Πk,j , which will be denoted henceforth by Πj ; that is,
∀j, 1 ≤ j ≤ m,nj = 1.

Π = (G,Γ,Σ, T, n = m, {Πj | 1 ≤ j ≤ m}, {Ej | 1 ≤ j ≤ m},RE)

In these systems there are rules of the following types:

1. u[v]αi
p−→ u′[v′]α

′
i

2. (x)ej

p1−→ (y1)ej1
· · · (yh)ejh

Let us recall that in this kind of systems each rule has an associated proba-
bility function that depends on the time and on the environment where the rule
is applied.

Finally, in order to ease the understandability of the whole framework,
Figure 1 shows a graphical summary of multienvironment P systems and the
two approaches (stochastic and probabilistic).

Some practical examples of using PDP systems on the modelling of real
ecosystems are: the Bearded Vulture at the Pyrenees (Spain) [3,6], the Zebra
mussel at the Ribarroja reservoir (Spain) [3], and the Pyrenean Chamois [5]. A
simple example of modelling pandemics dynamics can be seen in [2].

The dynamics of these systems is captured by the Direct Non-deterministic
Distribution algorithm with Probabilities (DNDP) algorithm [17], or the Direct
distribution based on Consistent Blocks Algorithm (DCBA) [16]. DNDP aims
to perform a random distribution of rule applications without using the concept

Fig. 1. The formal framework of Multienvironment P systems

of rule block, but this selection process is biased towards those rules with the
highest probabilities. DCBA was first conceived to overcome the accuracy prob-
lem of DNDP, by performing an object distribution along the rule blocks, before
applying the random distribution process. Although the accuracy achieved by
the DCBA is better than the DNDP algorithm, the latter is much faster. In
order to improve the performance of simulators implementing DCBA, parallel
architectures has been used [15]. For example, a GPU-based simulator, using
CUDA, reaches the acceleration of up to 7x, running on a NVIDIA Tesla C1060
GPU (240 processing cores). However, these accelerated simulators are still to be
connected to those general environments to run virtual experiments. Therefore,
P–Lingua and pLinguaCore are being utilised to simulate PDP systems [2,11].
The provided virtual experimentation environment is called MeCoSim [21], and
it is based on P–Lingua.

4 Probabilistic Guarded P Systems (PGP)

Probabilistic Guarded P systems are multienvironment P systems with a prob-
abilistic approach such that n = 0, that is, there is no P systems Πk,j (so the
alphabet Γ can be considered as an emptyset), and the alphabet of the flags, Φ,
is a nonempty set such that every environment has a unique flag in the initial
configuration.

Definition 2. A Probabilistic Guarded P system (PGP system, for short) of
degree m ≥ 1 is a tuple Π = (G,Σ,Φ, T, {Aj | 1 ≤ j ≤ m},R), where:

– G = (V, S) is a directed graph whose set of nodes is V = {e1, . . . , em}.
– Σ and Φ are finite alphabets such that Σ ∩ Φ = ∅. Elements in Σ are called

objects and elements in Φ are called flags.
– For each j, 1 ≤ j ≤ m, Aj = Ej ∪{fj}, with fj ∈ Φ and Ej ∈ Mf (Σ). Thus,

from now on, we “represent” Aj by the pair (fj , Ej).
– R is a finite set of rules of the following types:

• {f} (u)ej
→ (v)ej1

with u, v ∈ Mf (Σ) , f ∈ Φ and 1 ≤ j, j1 ≤ m.
• {f} (u, f)ej

→ (v, g)ej
with u, v ∈ Mf (Σ), f, g ∈ Φ and 1 ≤ j ≤ m.

There are no rules of types {f} (u, f)ej
→ (v, g)ej

and {f} (u)ej
−→(v)ej1

,
for f ∈ Φ, 1 ≤ j, j1 ≤ m and u ∈ Mf (Σ)).
For each f ∈ Φ and j, 1 ≤ j ≤ m, there exists only one rule of type
{f} (u, f)ej

→ (v, g)ej
.

– The arcs of graph G = (V, S) are defined from R as follows: (ej , ej1) ∈ S if
and only if there exists a rule of the type {f} (u)ej

→ (v)ej1
, or j = j1 and

there exists a rule of the type {f} (u, f)ej
→ (v, g)ej

.
– Each rule from R has an associated probability, that is, there exists a function

pR from R into [0, 1], such that:
• For each f ∈ Φ, u ∈ Mf (Σ), 1 ≤ j ≤ m, if r1, . . . , rt are rules of the type

{f} (u)ej
→ (v)ej1

, then
∑t

s=1 pR(rs) = 1.
• If r ≡ {f} (u, f)ej

→ (u, g)ej
, then pR(r) = 1.

A Probabilistic Guarded P system can be viewed as a set of m environments,
called cells, labelled by 1, . . . , m such that: (a) E1, . . . , Em are finite multisets
over Σ representing the objects initially placed in the cells of the system; (b)
f1, . . . , fm are flags that initially mark the cells; (c) G is a directed graph whose
arcs specify connections among cells; (d) R is the set of rules that allow the
evolution of the system and each rule r is associated with a real number pR(r)
in [0, 1] describing the probability of that rule to be applied in the case that it
is applicable. That is to say, each rule r has a probability pR(r) to be applied
at an instant t for each possible application of r at such an instant. Γ and n are
omitted, as they are Γ = and n = 0, respectively. Let us point out that the set
of rules R is exactly the set RE in Definition 1, since nj = 0, 1 ≤ j ≤ m.

In PGP systems, two types of symbols are used: objects (elements in Σ) and
flags (elements in Φ). It can be considered that objects are in cells and flags are
on (the borderline of) cells.

4.1 Semantics of PGP Systems

Definition 3. A configuration at any instant t ≥ 0 of a PGP system Π is
a tuple Ct = (x1, u1, . . . , xm, um) where, for each i, 1 ≤ i ≤ m, xi ∈ Φ and
ui ∈ Mf (Σ). That is to say, such a configuration is described by all multisets of
objects over Σ associated with all the cells present in the system and the flags
marking these cells. (f1, E1, . . . , fm, Em) is said to be the initial configuration
of Π. At any instant, each cell has exactly one flag, in a similar manner to
polarizations in cell–like P systems.

Definition 4. A rule r of the type {f} (u)i → (v)j is applicable to a config-
uration Ct = (x1, u1, . . . xm, um) if and only if xi = f and u ⊆ ui, for all i
(1 ≤ i ≤ m).

When applying r to Ct, objects in u are removed from cell i and objects in
v are produced in cell j. Flag f is not changed; it plays the role of a catalyst
assisting the evolution of objects in u.

Definition 5. A rule r of the type {f} (u, f)i → (v, g)i, where 1 ≤ i ≤ m, is
applicable to a configuration Ct = (x1, u1, . . . xm, um) if and only if xi = f and
u ⊆ ui.

When applying r to Ct, in cell i objects in u are replaced by those in v and f
is replaced by g. In this case, flag f is consumed, so r can be applied only once
in instant t in cell i.

Remark 1. After applying a rule r of the type {f} (u, f)i → (v, g)i, other rules
r′ of the type {f} (u)i → (v)j can still be applied (the flag remains in vigor).
However, f has been consumed (in the same sense that an object x ∈ Σ is
consumed), so no more rules of the type {f} (u, f)i → (v, g)i can be applied.

Definition 6. A configuration is a halting configuration if no rule is applicable
to it.

Definition 7. We say that configuration C1 yields configuration C2 in a
transition step if we can pass from C1 to C2 by applying rules from RE in a non–
deterministic, maximally parallel manner, according to their associated probabil-
ities denoted by map pRE . That is to say, a maximal multiset of rules from RE
is applied, no further rule can be added.

Definition 8. A computation of a PGP system Π is a sequence of configura-
tions such that: (a) the first term of the sequence is the initial configuration of
Π, (b) each remaining term in the sequence is obtained from the previous one
by applying the rules of the system following Definition 7, (c) the sequence will
have, at most, T + 1 terms. That is, we consider that the execution of a PGP
system will perform, at most, T steps.

4.2 Comparison Between PGP Systems and Other Frameworks in
Membrane Computing

Probabilistic Guarded P systems display similarities with other frameworks in
Membrane Computing. For example, P systems with proteins on membranes [18]
are a type of cell-like systems in which membranes might have attached a set
of proteins which regulate the application of rules, whilst in PGP systems each
cell has only one flag. Therefore, some rules are applicable if and only if the
corresponding protein is present.

When comparing PGP systems and Population Dynamics P systems [2], it
is important to remark the semantic similarity between flags and polarizations,
as they both define at some point the context of each compartment. Neverthe-
less, as described at the beginning of this paper, upon the application of a rule

r ≡ {f} (u, f)i → (v, g)i flag f is consumed, thus ensuring that r can be applied
at most once to any configuration. This property keeps PGP transitions from
yielding inconsistent flags; at any instant, only one rule at most can change the
flag in each membrane, so scenarios in which inconsistent flags produced by mul-
tiple rules are impossible. Moreover, in PDP systems the number of polarizations
is limited to three (+, - and 0), whereas in their PGP counterpart depends on the
system itself. Finally, each compartment in PDP systems contains a hierarchical
structure of membranes, which is absent in PGP systems.

5 Simulation of PGP Systems

When simulating PGP systems, there exist two cases, according to if there exists
object competition or not. In this work, only algorithms for the second case are
introduced, but some ideas are given to handle object competition among rules
in the model, and kept for future developments.

5.1 Some Definitions on the Model

The following concepts defined for PGP systems are analogous to those described
in [16], but adapted to the syntax of PGP systems.

Remark 2. For the sake of simplicity, henceforth the following notation will be
used. For every cell i , 1 ≤ i ≤ m, and time t , 0 ≤ t ≤ T, the flag and multiset of
cell i in step t are denoted as xi,t ∈ Φ and ui,t ∈ Mf (Σ), respectively. Similarly,
|u|y, where u ∈ Mf (Σ), y ∈ Σ denotes the number of objects y in multiset u.

Definition 9 shows the notation regarding the left-hand and right-hand sides
of rules.

Definition 9. For each rule r ∈ RE :

Type 1: If r is of the form r ≡ {f} (u)i → (v)j, we denote the left–hand side
of r (LHS(r)) as LHS(r) = (i, f, u) and the right–hand side of r (RHS(r))
as RHS(r) = (j, f, v).

Type 2: If r is of the form r ≡ {f} (u, f)i → (v, g)i, we denote the left–hand
side as LHS(r) = (i, f, u, f) and the right–hand side as RHS(r) = (i, g, v).

Let us recall that for each i, 1 ≤ i ≤ m, and f ∈ Φ, there exists a unique rule
of type 2: r ≡ {f} (u, f)i → (v, g)i.

Next, Definition 10 introduces the concept of rule blocks in PGP systems,
which is inspired by the one used in PDP systems [16].

Definition 10. For each 1 ≤ i ≤ q, f ∈ Φ, and u ∈ Mf (Σ), we will denote:

– The block of communication rules B1
i,f,u = {r ∈ R : LHS(r) = (i, f, u)}.

– The block of context–changing rules B2
i,f,u = {r ∈ R : LHS(r)= (i, f, u, f)}.

Obviously, B1
i,f,u ∩ B2

i,f,u = ∅. It is important to recall that, as it is the
case in PDP systems, the sum of probabilities of all the rules belonging to the
same block is always equal to 1 – in particular, rules with probability equal to
1 form individual blocks. Consequently, non–empty blocks of context–changing
rules (type 2) are composed of single rules. In addition, rules with overlapping
(but different) left–hand sides are classified into different blocks.

Definition 11. For each i, 1 ≤ i ≤ m, we will consider the set of all rule blocks
associated with cell i as Bi = {B1

i,f,u, B2
i,f,u : f ∈ Φ ∧ u ∈ Mf (Σ)}.

We will also consider a total order in Bi, for 1 ≤ i ≤ m, Bi =
{Bi,1, Bi,2, . . . , Bi,αi

}. Therefore, there are αi blocks associated to cell i.
Furthermore, let Bi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ αi be a block associated to cell i.

We define the following notations:

– Type(Bi,j) is equal to:
• 1, if ∃f ∈ Φ, u ∈ Mf (Σ) such that Bi,j = B1

i,f,u

• 2, if ∃f ∈ Φ, u ∈ Mf (Σ) such that Bi,j = B2
i,f,u

– Flag(Bi,j) = f , if ∃k(1 ≤ k ≤ 2) ∧ ∃u ∈ Mf (Σ) such that Bi,j = Bk
i,f,u

– Mult(Bi,j) = u, if ∃k(1 ≤ k ≤ 2) ∧ ∃f ∈ Φ such that Bi,j = Bk
i,f,u

In addition, for each block Bi,j , 1 ≤ i ≤ m and 1 ≤ j ≤ αi, associated to
cell i, we consider a total order in its set of rules: Bi,j =

{
ri,j,1, . . . , ri,j,hi,j

}
,

where hi,j(1 ≤ i ≤ m, 1 ≤ j ≤ αi) denotes the number of rules in block Bi,j .
Obviously, all the rules of a block are of the same type.

Definition 12. A PGP system is said to feature object competition, if there
exists at least two different blocks Bi,j and Bi,j′ (possibly of different type), such
that Flag(Bi,j) = Flag(Bi,j′), and Mult(Bi,j) ∩ Mult(Bi,j′) �= ∅. That is, their
rules have overlapping (but not equal) left-hand sides.

Remark 3. It is worth noting that all rules in the model can be consistently
applied. This is because there can only exists one flag f ∈ Φ at every membrane
at the same time, and, consequently, at most one context–changing rule r ≡
{f} (u, f)i → (v, g)i can consume f and replace it (where possibly f = g).

Definition 13. Given a block B1
i,f,u or B2

i,f,u, where u ∈ Mf (Σ), f ∈ Φ, 1 ≤
i ≤ m and a configuration Ct = {x1, u1, . . . , xm, um} , 0 ≤ t ≤ T , the maximum
number of applications of such a block in Ct is the maximum times that each
one of its rules can be applied in Ct.

5.2 Simulation Algorithm

Next, we define some auxiliary data structures to be used in the simulation
algorithms.

NBA (Number of Block Applications): a matrix of integer numbers of
dimension m × NBM , where NBM = max(αi | 1 ≤ i ≤ m) (maximum num-
ber of blocks for all cells). Each element NBAi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ NBM

stores the number of applications of block Bi,j .
NRA (Number of Rule Applications): a matrix of integer numbers of

dimension m × NBM × NRM , where NRM = max(hi,j), 1 ≤ i ≤ m, 1 ≤
j ≤ αi (maximum number of rules for all blocks in all membranes). Each
element NRAi,j,k, 1 ≤ i ≤ m, 1 ≤ j ≤ αi, 1 ≤ k ≤ hi,j , stores the number
of applications of rule ri,j,k, identified by its cell, block and local identifier
inside its block, according to the established total order.

The algorithm for simulation of PGP systems receives three parameters:

– The PGP system Π of degree m.
– The integer number T > 0 (number of time steps).
– An integer number K > 0 (random accuracy). It indicates for how many

cycles block applications are assigned among their rules in random fashion.
That is, the algorithm distributes the applications of each block among its
rules for K cycles, and after that, block applications are maximally assigned
among rules in a single cycle. Therefore, the greater K is, the more accu-
rate the distribution of rule applications for each block becomes, but at the
expense of a greater computational cost. It is used as an accuracy parameter
for the probabilistic method. Algorithm 5.4 performs this function.

When simulating PGP systems without object competition, it is not nec-
essary to randomly assign objects among blocks; as they do not compete for
objects, then the number of times that each block is applied is always equal
to its maximum number of applications. As it is the case of DCBA for PDP
systems [16], the simulation algorithm heavily relies on the concept of block,
being rule applications secondary. However, DCBA handles object competition
among blocks, penalizing more those blocks which require a larger number of
copies of the same object which is inspired by the amount of energy required to
join individuals from the same species. On the other hand, object competition is
not supported on the proposed algorithm. Algorithm 5.1 describes a simulation
algorithm for PGP systems without object competition.

On each simulation step t, 1 ≤ t ≤ T and cell i, 1 ≤ i ≤ m, the following
stages are applied: Object distribution (selection), Rule application distribution
(selection) and Object generation (execution).

However, before starting the simulation process, we must initialize some data
structures. In Initialization (Algorithm 5.2), the initial configuration C0 is con-
structed with the input PGP system Π. Moreover, the information about blocks
are created; that is, the blocks of rules are computed, and ordered for each cell.
Moreover, the rules inside each block are also ordered. Finally, the data struc-
tures NBA and NRA are initialized with zeros.

In the Object distribution stage (Algorithm 5.3), objects are distributed among
blocks. As the system to simulate does not feature object competition, the number

Algorithm 5.1. Algorithm for simulation of PGP systems
Input:

– T : an integer number T ≥ 1 representing the iterations of the simulation.
– K: an integer number K ≥ 1 representing non–maximal rule iterations (i.e., itera-

tions in which the applications selected for each rule do not necessarily need to be
maximal).

– Π = (G, Σ, Φ, T, {(fj , Ej) | 1 ≤ j ≤ m}, R): a PGP system of degree m ≥ 1.

1: Initialization (Π)
2: for t ← 1 to T do � See Algorithm 5.2
3: C ′

t ← Ct−1

4: SELECTION of rules:
5: PHASE 1: Objects distribution (C′

t) � See Algorithm 5.3
6: PHASE 2: Rule application distribution (C′

t) � See Algorithm 5.4
7: EXECUTION of rules:
8: PHASE 3: Object production (C′

t) � See Algorithm 5.5
9: Ct ← C′

t

10: end for

Algorithm 5.2. Initialization
Input: Π = (G, Σ, Φ, T, {(fj , Ej) | 1 ≤ j ≤ m}, R)
1: C0 ← {f1, E1, . . . , fm, Em} � Initial configuration
2: for i ← 1 to m do � For each cell
3: Bi ← ordered set of blocks formed by rules of R associated with cell i
4: αi ← |Bi| � Number of rule blocks
5: for j ← 1 to αi do � For each block associated with the cell
6: Bi,j ← ordered set of rules from jth block in Bi.
7: hi,j ← |Bi,j | � Number of rules within the block
8: NBAi,j ← 0 � Initially, all blocks applications are 0
9: for k ← 1 to hi,j do � Initially, all rule applications are 0

10: NRAi,j,k ← 0
11: end for
12: end for
13: end for

of applications of each block is its maximum. Then, objects are consumed accord-
ingly. It is in this stage that the flag checking for each block is performed. Moreover,
blocks of type 2 (context–changing rules) consume and generate the new flag.

Next, objects are distributed among rules according to a binomial distribu-
tion with rule probabilities and maximum number of block applications as para-
meters. This algorithm is composed of two stages non–maximal and maximal
repartition. In the non–maximal repartition stage, a rule in the block is randomly
selected according to a uniform distribution, so each rule has the same proba-
bility to be chosen. Then, its number of applications is calculated according to
an ad–hoc procedure based on a binomially distributed variable Binomial(n, p),
where n is the remaining number of block applications to be assigned among

Algorithm 5.3. Phase 1: Object distribution among blocks
Input: C′

t = {x1,t, u1,t, . . . , xm,t, um,t}
1: for i ← 1 to m do � For each cell
2: for j ← 1 to αi do � For each block associated with the cell
3: if Flag(Bi,j) = xi,t then
4: if Type(Bi,j) = 1 ∧ Mult(Bi,j) ⊆ ui,t then

5: NBAi,j ← min(� |ui,t|z
|Mult(Bi,j)|z � : z ∈ Σ) � Maximal application

6: ui,t ← ui,t − NBAi,j · Mult(Bi,j) � Update the configuration
7: end if
8: if Type(Bi,j) = 2 ∧ Mult(Bi,j) ⊆ ui,t then
9: NBAi,j ← 1 � Just one application

10: xi,t ← g, being RHS(ri,j,1) = (i, g, v) with Bi,j = {ri,j,1} � Update
cell flag

11: ui,t ← ui,t − NBAi,j · Mult(Bi,j) � Update the configuration
12: end if
13: end if
14: end for
15: end for

Algorithm 5.4. Phase 2: Rule application distribution
Input: C′

t = {x1,t, u1,t, . . . , xm,t, um,t}
for k ← 1 to K do � Non-maximal repartition stage

for i ← 1 to m do
for j ← 1 to αi do

l ← Uniform{1, . . . , hi,j} � Select a random rule ri,j,l in Block Bi,j

lnrap ← Binomial(NBAi,j , pR(ri,j,l))
NRAi,j,l ← NRAi,j,l + lnrap � Update rule applications
NBAi,j ← NBAi,j − lnrap

end for
end for

end for
for i ← 1 to m do � Maximal repartition stage

for j ← 1 to αi do
l ← Uniform{1, . . . , hi,j}
NRAi,j,l ← NRAi,j,l + NBAi,j

NBAi,j ← 0
end for

end for

its rules and p is the corresponding rule probability. This process is repeated a
number K of iterations for each block Bi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ αi. We propose
this procedure to simulate a multinomial distribution, but it could be easily
interchangeable by another one. Algorithm 5.4 describes this procedure. If, after
this process, there are still applications to assign among rules, a rule per applica-
ble block is chosen at random and as many applications as possible are assigned
to it in the maximal repartition stage. An alternative approach would be to

Algorithm 5.5. Phase 3: Object production
for i ← 1 to m do � For each cell

for j ← 1 to αi do � For each block associated with the cell
for k ← 1 to hi,j do � For each rule belonging to the block

ui,t ← ui,t + NRAi,j,k · v, where RHS(ri,j,k) = (i′, f ′, v)
NRAi,j,k ← 0

end for
end for

end for

implement a multinomial distribution of applications for the rules inside each
block, such as the way that it is implemented on the DCBA algorithm [16].
A method to implement a multinomial distribution would be the conditional
distribution method, which emulates a multinomial distribution based on a
sequence of binomial distributions [9]. This would require to normalize rule prob-
abilities for each rule application distribution iteration. This approach has also
been tested on the simulation algorithm, but was discarded because it tends
to distribute too few applications in the non–maximal repartition stage, thus
leaving too many applications for the rule selected in the maximal repartition
one.

Lastly, rules produce objects as indicated by their right–hand side. Each rule
produces objects according to its previously assigned number of applications.
Algorithm 5.5 describes this procedure.

The algorithm proposed in this paper works only for models without object
competition. This is because the models studied so far (such as the Pieris oler-
acea model to be mentioned on Section 6) did not have object competition, so
this feature was not required. However, it might be interesting to develop new
algorithms supporting it. They would be identical to their counterpart without
object competition, solely differing in the protocol by which objects are distrib-
uted among blocks. As an example, it would be possible to adapt the way in
which objects are distributed in the DCBA algorithm [16].

5.3 Software Environment

This section provides an overview of the developed simulators, the P–Lingua
extension, and the GUI for PGP systems.

Software Enviornment. A simulator for PGP systems without object com-
petition has been incorporated on P–Lingua [11]. In addition, a C++ simulator
for PGP systems (namely PGPC++) has also been implemented. The libraries
used for random number generation are COLT [26] in the P–Lingua simulator,
and standard std::rand [27] for PGPC++. In the latter, the facilities provided by
std::rand are directly used. These libraries provide a wide range of functionality
to generate and handle random numbers, and are publicly available under open
source licenses.

P–Lingua Extension. In order to define PGP systems, P–Lingua has been
extended to support PGP rules. Specifically, given f, g ∈ Φ, u, v ∈ Mf (Σ), 1 ≤
i, j ≤ m, p = pR(r), rules are represented as follows:

{f} (u)i
p→ (v)j , ≡ @guard f ?[u]’i --> [v]’j :: p ;

{f} (u, f)i → (v, g)i ≡ @guard f ?[u,f]’i --> [v,g]’i :: 1.0;

In both cases, if p = 1.0, then :: p can be omitted. If i = j, then {f} (u)i
p→ (v)j

can be written as @guard f ?[u --> v]’i :: p ;. Likewise, {f} (u, f)i →
(v, g)i can always be written as @guard f ?[u,f --> v,g]’i ;.

Further additional constructs have been included to ease parametrization of P
systems. The idea is to enable completely parametric designs, so as experiments
can be tuned by simply adjusting parameters leaving modifications of P–Lingua
files for cases in which changes in semantics are in order. This extension is going
to be released on the next version of P–Lingua.

In addition, two new formats have been integrated into P-Lingua. These for-
mats (XML–based and binary) encode P systems representing labels and objects
as numbers instead of strings, so they are easily parsed and simulated by third–
part simulators such as PGPC++.

A Graphical Environment for PGP Systems. MeCoGUI is a new Graph-
ical User Interface (GUI) developed for the simulation of PGP systems.
MeCoSim [21] could have been used instead. However, in the environment in
which the simulators were developed there exist some pros and cons on this
approach versus and ad–hoc simulator.

MeCoSim is an integrated development environment (IDE). That is to say, it
provides all functionality required for the simulation and computational analysis
of P systems. To define the desired input and output displays, it is necessary to
configure a spreadsheet by using an ad–hoc programming language. However, it
would entail teaching this language to prospective users, who can be proficient
in any other statistic programming language instead, such as R. In this sense, a
more natural approach for them is to develop a GUI in which users can define
input parameters and results analysis on R.

To do so, the developed GUI takes as input a P system file on P–Lingua
format and a CSV file encoding its parameters, and outputs a CSV file which
contains simulation results. This way, users can define inputs and analyse out-
puts on their programming language of choice. CSV is a widespread, simple
and free format with plenty of libraries for different languages. This flexibility
comes at the cost concerning that the developed GUI is not an IDE, as input
parameters and simulation analysis cannot be directly input and viewed on the
GUI. Rather, it is necessary to develop applications to generate and process
these CSV files which depend on the domain of use. In some simulators (such
as PGPC++), the output CSV files represent labels and objects as integers,
but this application includes a button to translate output files from PGPC++
into string–representative file formats. Figure 2 displays the main screen of this
application.

Fig. 2. Main screen of MeCoGUI

MeCoGUI can also translate P systems into machine–readable formats, such
as those read by PGPC++. Finally, it is important to remark that these appli-
cations play the role of domain–specific spreadsheets on MeCoSim, so MeCoGUI
can simulate any type of P system supported by P–Lingua. This is because only
external applications for input data and simulation processing depend on the
domain, not MeCoGUI itself, which is general for any type of P system.

6 Applications of PGP Systems

A model of the ecosystem of the white cabbage butterfly (Pieris oleracea) [8],
based on PGP systems, is a currently ongoing project. Such a species is suffering
the invasion of the garlic mustard (Alliaria petiolata), which is replacing native
host broadleaf toothwort (Cardamine diphylla) and ravaging the butterfly’s nat-
ural habitat. Specifically, A. petiolata contains a deterrent agent for larvae of
P. oleracea. Moreover, such a plant is toxic for these larvae, although it con-
tains a chemical compound which lures mature butterflies and frames them into
laying eggs. Nevertheless, a minority of individuals tolerates such a deterrent,
metabolize the toxin and reach the pupa stage [13,14].

The distribution of phylogenetic profiles across the species consists of a
majority of homozygous individuals unable to thrive on A. petiolata patches,
a minority of homozygous individuals which do well on A. petolata rosettes and,
in the midterm, an slightly larger population of heterozygous individuals with
both alleles. The allele which enables butterflies to overcome the dietary restric-
tions imposed by A. petiolata is dominant, but individuals carrying this allele
undergo a detoxification mechanism which entails an energetic cost and hampers
their arrival at adulthood [13].

The model under development aims to identify if there has been any evolu-
tionary adaptation of the butterfly species significant enough so as to ensure its
survival in the new scenario. Specifically, the idea is to assess if the detoxification
cost associated with individuals tolerating A. petiolata pays off in the new sce-
nario or, on the other hand, the phylogenetic distribution will stay the same and
other mechanism will come into effect, such as hybridization with other butterfly
species such as Pieris rapae [8].

The approach taken in this project aims to validate the model qualitatively.
A qualitative validation is defined as follows: a model is qualitatively validated
if it can reproduce some properties verified by the ecosystem under different
scenarios (according to the experts).

7 Conclusions and Future Work

Multienvironment P systems are a general, formal framework for modelling pop-
ulation dynamics in biology. The framework has two main approaches: stochastic
(micro–level oriented) and probabilistic (macro–level oriented). The framework
has been extended in the probabilistic approach, with the inclusion of a new
modelling framework called Probabilistic Guarded P (PGP) systems. PGP sys-
tems are inspired by Population Dynamics P systems, and aim to simplify the
design and simulation of models of ecological phenomena. The model has been
formalized in this paper, and a simulation algorithm is introduced. This algo-
rithm is restricted for models which do not feature object competition. Moreover,
an extension of the P–Lingua language is provided to enable PGP systems in
P–Lingua, as well as a Graphical User Interface (GUI) to simulate PGP systems
(MeCoGUI).

The framework of PGP systems is being utilized for modelling the ecosystem
of Pieris napi oleracea, a butterfly native to Northeastern America. The aim is to
validate the model qualitatively; that is, checking that if the ecosystem verifies
some properties under different scenarios (experts), our model reproduces those
properties as well.

Although PGP systems provide a simplified alternative to PDP systems,
some constraints to the supported models are imposed: only models without
object competition are allowed. Therefore, future research lines will be focused
on overcoming this constraint, providing new simulation algorithms permitting
object competition. Moreover, new case studies will be considered, which can
help to extend the framework. Finally, PGP simulation will be accelerated by
using parallel architectures, such as GPU computing with CUDA.

Acknowledgements. The authors acknowledge the support of the project TIN2012-
37434 of the “Ministerio de Economı́a y Competitividad” of Spain, co-financed by
FEDER funds. Manuel Garćıa–Quismondo also acknowledges the support from the
National FPU Grant Programme from the Spanish Ministry of Education. Miguel A.
Mart́ınez-del-Amor also acknowledges the support of the 3rd Postdoctoral phase of the
PIF program associated with “Proyecto de Excelencia con Investigador de Reconocida

Vaĺıa” of the “Junta de Andalućıa” under grant P08-TIC04200. The authors also recog-
nize the assistance provided by Profs. Michael Reed and Frances Chew from TUFTS
University on the development of the proposed framework.

References

1. Blakes, J., Twycross, J., Romero-Campero, F.J., Krasnogor, N.: The Infobiotics
Workbench: an integrated in silico modelling platform for Systems and Synthetic
Biology. Bioinformatics 27(23), 3323–3324 (2011)

2. Colomer, M.A., Garćıa-Quismondo, M., Maćıas-Ramos, L.F., Mart́ınez-del-Amor,
M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A., Valencia-Cabrera,
L.: Membrane system-based models for specifying Dynamical Population systems.
In: Applications of Membrane Computing in Systems and Synthetic Biology. Emer-
gence, Complexity and Computation series, Chap. 4, vol. 7, pp. 97–132. Springer
(2014)

3. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems based on
P systems. Natural Computing 10(1), 39–53 (2011)

4. Cheruku, S., Păun, A., Romero-Campero, F.J., Pérez-Jiménez, M.J., Ibarra, O.H.:
Simulating FAS-induced apoptosis by using P systems. Progress in Natural Science
17(4), 424–431 (2007)

5. Colomer, M.A., et al.: Modeling population growth of Pyrenean Chamois (Rupi-
capra p. pyrenaica) by using P-systems. In: Gheorghe, M., Hinze, T., Păun, Gh.,
Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 144–159.
Springer, Heidelberg (2010)

6. Colomer, M.A., Margalida, A., Sanuy, D., Pérez-Jiménez, M.J.: A bio-inspired
computing model as a new tool for modeling ecosystems: The avian scavengers as
a case study. Ecological Modelling 222(1), 33–47 (2011)

7. Colomer, M.A., Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.,
Riscos-Núñez, A.: A uniform framework for modeling based on P Systems. In: Pro-
ceedings IEEE Fifth International Conference on Bio-inpired Computing: Theories
and Applications (BIC-TA 2010), vol. 1, pp. 616–621 (2010)

8. Chew, F.S.: Coexistence and local extinction in two pierid butterflies. The Amer-
ican Naturalist 118(5), 655–672 (1981)

9. Davis, C.S.: The computer generation of multinomial random variates. Computa-
tional Statistics and Data Analysis 16(2), 205–217 (1993)

10. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing in Systems and Synthetic Biology. Springer (2014)

11. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A.: An overview of P-Lingua 2.0. In: Păun, Gh., Pérez-
Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009.
LNCS, vol. 5957, pp. 264–288. Springer, Heidelberg (2010)

12. Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P systems - Version I. In: Proceedings
of the Eleventh Brainstorming Week on Membrane Computing (BWMC 2013),
pp. 97–124 (2013)

13. Keeler, M.S., Chew, F.S.: Escaping an evolutionary trap: preference and perfor-
mance of a native insect on an exotic invasive host. Oecologia 156(3), 559–568
(2008)

14. Keeler, M.S., Chew, F.S., Goodale, B.C., Reed, J.M.: Modelling the impacts of
two exotic invasive species on a native butterfly: top-down vs. bottom-up effects.
Journal of Animal Ecology 75(3), 777–788 (2006)

15. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Gastalver-Rubio, A., Elster, A.C.,
Pérez-Jiménez, M.J.: Population Dynamics P systems on CUDA. In: Gilbert, D.,
Heiner, M. (eds.) CMSB 2012. LNCS (LNBI), vol. 7605, pp. 247–266. Springer,
Heidelberg (2012)

16. Mart́ınez-del-Amor, M.A., et al.: DCBA: Simulating Population Dynamics P Sys-
tems with Proportional Object Distribution. In: Csuhaj-Varjú, E., Gheorghe, M.,
Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762,
pp. 257–276. Springer, Heidelberg (2013)

17. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez,
A., Sancho-Caparrini, F.: A simulation algorithm for multienvironment probabilis-
tic P systems: A formal verification. International Journal of Foundations of Com-
puter Science 22(1), 107–118 (2011)

18. Păun, A., Popa, B.: P systems with proteins on membranes. Fundamenta Infor-
maticae 72(4), 467–483 (2006)

19. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000). and TUCS Report No. 208 (2000)

20. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

21. Pérez-Hurtado, I., Valencia-Cabrera, L., Pérez-Jiménez, M.J., Colomer, M.A.,
Riscos-Núñez, A.: MeCoSim: A general purpose software tool for simulating biolog-
ical phenomena by means of P Systems. In: Proceedings IEEE Fifth International
Conference on Bio-inpired Computing: Theories and Applications (BIC-TA 2010),
vol. I, pp. 637–643 (2010)

22. Pérez-J́ımenez, M.J., Romero-Campero, F.J.: P systems, A new computational
modelling tool for Systems Biology. In: Priami, C., Plotkin, G. (eds.) Trans. on
Comput. Syst. Biol. VI. LNCS (LNBI), vol. 4220, pp. 176–197. Springer, Heidelberg
(2006)

23. Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P systems.
Journal of Complexity 26(3), 296–315 (2010)

24. Romero-Campero, F.J., Pérez-Jiménez, M.J.: A model of the Quorum Sensing
system in Vibrio fischeri using P systems. Artificial Life 14(1), 95–109 (2008)

25. Romero-Campero, F.J., Pérez-Jiménez, M.J.: Modelling gene expression control
using P systems: The Lac Operon, a case study. BioSystems 91(3), 438–457 (2008)

26. COLT library. http://acs.lbl.gov/software/colt/index.html
27. RAND function in C++/C Standard General Utilities Library (cstdlib). http://

www.cplusplus.com/reference/cstdlib/rand

http://acs.lbl.gov/software/colt/index.html
http://www.cplusplus.com/reference/cstdlib/rand
http://www.cplusplus.com/reference/cstdlib/rand

	Probabilistic Guarded P Systems, A New Formal Modelling Framework
	1 Introduction
	2 Preliminaries
	3 (Extended) Multienvironment P Systems
	3.1 Stochastic Approach
	3.2 Probabilistic Approach

	4 Probabilistic Guarded P Systems (PGP)
	4.1 Semantics of PGP Systems
	4.2 Comparison Between PGP Systems and Other Frameworks in Membrane Computing

	5 Simulation of PGP Systems
	5.1 Some Definitions on the Model
	5.2 Simulation Algorithm
	5.3 Software Environment

	6 Applications of PGP Systems
	7 Conclusions and Future Work
	References

