3 research outputs found

    Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

    No full text
    Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1, acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7-2.4-fold more transmissible, and that previous (non-P.1) infection provides 54-79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness

    ALICE: Physics Performance Report, Volume II

    No full text
    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dN(ch)/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus-nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC. Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate. The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517-1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of the subsystem designs, and a description of the offline framework and Monte Carlo event generators. The present volume, Volume II, contains the majority of the information relevant to the physics performance in proton-proton, proton-nucleus, and nucleus-nucleus collisions. Following an introductory overview, Chapter 5 describes the combined detector performance and the event reconstruction procedures, based on detailed simulations of the individual subsystems. Chapter 6 describes the analysis and physics reach for a representative sample of physics observables, from global event characteristics to hard processes

    Outcomes from elective colorectal cancer surgery during the SARS‐CoV‐2 pandemic

    Get PDF
    Aim This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic. Method This was an international cohort study of patients undergoing elective resection of colon or rectal cancer without preoperative suspicion of SARS-CoV-2. Centres entered data from their first recorded case of COVID-19 until 19 April 2020. The primary outcome was 30-day mortality. Secondary outcomes included anastomotic leak, postoperative SARS-CoV-2 and a comparison with prepandemic European Society of Coloproctology cohort data. Results From 2073 patients in 40 countries, 1.3% (27/2073) had a defunctioning stoma and 3.0% (63/2073) had an end stoma instead of an anastomosis only. Thirty-day mortality was 1.8% (38/2073), the incidence of postoperative SARS-CoV-2 was 3.8% (78/2073) and the anastomotic leak rate was 4.9% (86/1738). Mortality was lowest in patients without a leak or SARS-CoV-2 (14/1601, 0.9%) and highest in patients with both a leak and SARS-CoV-2 (5/13, 38.5%). Mortality was independently associated with anastomotic leak (adjusted odds ratio 6.01, 95% confidence interval 2.58–14.06), postoperative SARS-CoV-2 (16.90, 7.86–36.38), male sex (2.46, 1.01–5.93), age >70 years (2.87, 1.32–6.20) and advanced cancer stage (3.43, 1.16–10.21). Compared with prepandemic data, there were fewer anastomotic leaks (4.9% versus 7.7%) and an overall shorter length of stay (6 versus 7 days) but higher mortality (1.7% versus 1.1%). Conclusion Surgeons need to further mitigate against both SARS-CoV-2 and anastomotic leak when offering surgery during current and future COVID-19 waves based on patient, operative and organizational risks
    corecore