236 research outputs found

    Sensory traits and consumer’s perceived quality of traditional and modern fresh market tomato varieties: A study in three European countries

    Get PDF
    Consumer dissatisfaction with the flavor quality of many modern fresh market tomato varieties has fostered breeders’ interest in sensory quality improvement, and the demand for traditional varieties, which are generally associated with better flavor. To achieve further knowledge on the factors influencing the sensory quality and consumers’ preferences and perception, European traditional and modern fresh market tomato varieties were grown and evaluated in France, Italy, and Spain. Different growing conditions were tested in France (soilless vs. soil) and in Spain (open field vs. greenhouse), while in Italy fruits were evaluated at two ripening stages. Fruit quality was assessed by integrating physicochemical analyses, sensory profiles, and consumer tests. In all three countries, overall modern varieties were perceived as having more intense “tomato flavor” and “overall flavor” than traditional ones. In France and Spain, consumers’ preferences were more oriented towards modern varieties than traditional ones. Significant growing condition effects were found on sensory and physicochemical traits, while the effect on consumers’ overall liking was not significant, largely depending on the genotype. A fair agreement between product configurations from descriptive analysis by trained assessors and Check-All-That-Apply (CATA) questions by consumers was observed. Penalty-lift analysis based on CATA allowed identifying positive and negative drivers of liking.Postprint (published version

    Sensory Traits and Consumer’s Perceived Quality of Traditional and Modern Fresh Market Tomato Varieties: A Study in Three European Countries

    Get PDF
    Consumer dissatisfaction with the flavor quality of many modern fresh market tomato varieties has fostered breeders’ interest in sensory quality improvement, and the demand for traditional varieties, which are generally associated with better flavor. To achieve further knowledge on the factors influencing the sensory quality and consumers’ preferences and perception, European traditional and modern fresh market tomato varieties were grown and evaluated in France, Italy, and Spain. Different growing conditions were tested in France (soilless vs. soil) and in Spain (open field vs. greenhouse), while in Italy fruits were evaluated at two ripening stages. Fruit quality was assessed by integrating physicochemical analyses, sensory profiles, and consumer tests. In all three countries, overall modern varieties were perceived as having more intense “tomato flavor” and “overall flavor” than traditional ones. In France and Spain, consumers’ preferences were more oriented towards modern varieties than traditional ones. Significant growing condition effects were found on sensory and physicochemical traits, while the effect on consumers’ overall liking was not significant, largely depending on the genotype. A fair agreement between product configurations from descriptive analysis by trained assessors and Check-All-That-Apply (CATA) questions by consumers was observed. Penalty-lift analysis based on CATA allowed identifying positive and negative drivers of liking

    Overview and comparison of the clinical scores in hidradenitis suppurativa: A real-life clinical data

    Get PDF
    IntroductionPartly due to its clinical heterogeneity, hidradenitis suppurativa (HS) is difficult to score accurately; illustrated by the large number of disease scores. In 2016, a systematic review by Ingram et al. reported the use of about thirty scores, and since then, this number has increased further. Our aim is twofold: to provide a succinct but detailed narrative review of the scores used to date, and to compare these scores with each other for individual patients.Materials and methodsThe review of the literature was done among articles in English and French, on Google, Google scholar, Pubmed, ScienceDirect and Cochrane. To illustrate the differences between scores, data from some Belgian patients included in the European Registry for HS were selected. A first series of patients compares the severity of the following scores: Hurley, Hurley Staging refined, three versions of Sartorius score (2003, 2007, 2009), Hidradenitis Suppurativa Physician Global Assessment (HS-PGA), International Hidradenitis Suppurativa Severity Scoring System (IHS4), Severity Assessment of Hidradenitis Suppurativa (SAHS), Hidradenitis Suppurativa Severity Index (HSSI), Acne Inversa Severity Index (AISI), the Static Metascore, and one score that is not specific to HS: Dermatology Life Quality Index (DLQI). A second set of patients illustrates how some scores change over time and with treatment: Hurley, Hurley Staging refined, Sartorius 2003, Sartorius 2007, HS-PGA, IHS4, SAHS, AISI, Hidradenitis Suppurativa Clinical Response (HiSCR), the very new iHS4-55, the Dynamic Metascore, and DLQI.ResultsNineteen scores are detailed in this overview. We illustrate that for some patients, the scores do not predictably and consistently correlate with each other, either in an evaluation of the severity at a time-point t, or in the evaluation of the response to a treatment. Some patients in this cohort may be considered responders according to some scores, but non-responders according to others. The clinical heterogeneity of the disease, represented by its many phenotypes, seems partly to explain this difference.ConclusionThese examples illustrate how the choice of a score can lead to different interpretations of the response to a treatment, or even potentially change the results of a randomized clinical trial

    Tsunami risk communication and management: Contemporary gaps and challenges

    Get PDF
    Very large tsunamis are associated with low probabilities of occurrence. In many parts of the world, these events have usually occurred in a distant time in the past. As a result, there is low risk perception and a lack of collective memories, making tsunami risk communication both challenging and complex. Furthermore, immense challenges lie ahead as population and risk exposure continue to increase in coastal areas. Through the last decades, tsunamis have caught coastal populations off-guard, providing evidence of lack of preparedness. Recent tsunamis, such as the Indian Ocean Tsunami in 2004, 2011 Tohoku and 2018 Palu, have shaped the way tsunami risk is perceived and acted upon. Based on lessons learned from a selection of past tsunami events, this paper aims to review the existing body of knowledge and the current challenges in tsunami risk communication, and to identify the gaps in the tsunami risk management methodologies. The important lessons provided by the past events call for strengthening community resilience and improvement in risk-informed actions and policy measures. This paper shows that research efforts related to tsunami risk communication remain fragmented. The analysis of tsunami risk together with a thorough understanding of risk communication gaps and challenges is indispensable towards developing and deploying comprehensive disaster risk reduction measures. Moving from a broad and interdisciplinary perspective, the paper suggests that probabilistic hazard and risk assessments could potentially contribute towards better science communication and improved planning and implementation of risk mitigation measures

    Toward a Comprehensive and Integrated Strategy of the European Marine Research Infrastructures for Ocean Observations

    Get PDF
    Research Infrastructures (RIs) are large-scale facilities encompassing instruments, resources, data and services used by the scientific community to conduct high-level research in their respective fields. The development and integration of marine environmental RIs as European Research Vessel Operators [ERVO] (2020) is the response of the European Commission (EC) to global marine challenges through research, technological development and innovation. These infrastructures (EMSO ERIC, Euro-Argo ERIC, ICOS-ERIC Marine, LifeWatch ERIC, and EMBRC-ERIC) include specialized vessels, fixed-point monitoring systems, Lagrangian floats, test facilities, genomics observatories, bio-sensing, and Virtual Research Environments (VREs), among others. Marine ecosystems are vital for life on Earth. Global climate change is progressing rapidly, and geo-hazards, such as earthquakes, volcanic eruptions, and tsunamis, cause large losses of human life and have massive worldwide socio-economic impacts. Enhancing our marine environmental monitoring and prediction capabilities will increase our ability to respond adequately to major challenges and efficiently. Collaboration among European marine RIs aligns with and has contributed to the OceanObs’19 Conference statement and the objectives of the UN Decade of Ocean Science for Sustainable Development (2021–2030). This collaboration actively participates and supports concrete actions to increase the quality and quantity of more integrated and sustained observations in the ocean worldwide. From an innovation perspective, the next decade will increasingly count on marine RIs to support the development of new technologies and their validation in the field, increasing market uptake and produce a shift in observing capabilities and strategies.Peer reviewe

    The EMSO Generic Instrument Module (EGIM): standardized and interoperable instrumentation for ocean observation

    Get PDF
    The oceans are a fundamental source for climate balance, sustainability of resources and life on Earth, therefore society has a strong and pressing interest in maintaining and, where possible, restoring the health of the marine ecosystems. Effective, integrated ocean observation is key to suggesting actions to reduce anthropogenic impact from coastal to deep-sea environments and address the main challenges of the 21st century, which are summarized in the UN Sustainable Development Goals and Blue Growth strategies. The European Multidisciplinary Seafloor and water column Observatory (EMSO), is a European Research Infrastructure Consortium (ERIC), with the aim of providing long-term observations via fixed-point ocean observatories in key environmental locations across European seas from the Arctic to the Black Sea. These may be supported by ship-based observations and autonomous systems such as gliders. In this paper, we present the EMSO Generic Instrument Module (EGIM), a deployment ready multi-sensor instrumentation module, designed to measure physical, biogeochemical, biological and ecosystem variables consistently, in a range of marine environments, over long periods of time. Here, we describe the system, features, configuration, operation and data management. We demonstrate, through a series of coastal and oceanic pilot experiments that the EGIM is a valuable standard ocean observation module, which can significantly improve the capacity of existing ocean observatories and provides the basis for new observatories. The diverse examples of use included the monitoring of fish activity response upon oceanographic variability, hydrothermal vent fluids and particle dispersion, passive acoustic monitoring of marine mammals and time series of environmental variation in the water column. With the EGIM available to all the EMSO Regional Facilities, EMSO will be reaching a milestone in standardization and interoperability, marking a key capability advancement in addressing issues of sustainability in resource and habitat management of the oceans.This work was funded by the project EMSODEV (Grant agreement No 676555) supported by DG Research and Innovation of the European Commission under the Research Infrastructures Programme of the H2020. EMSO-link EC project (Grant agreement No 731036) provided additional funding. Other projects which supported the work include Plan Estatal de Investigación Científica y Técnica y de Innovación 2017–2020, project BITER-LANDER PID2020- 114732RB-C32, iFADO (Innovation in the Framework of the Atlantic Deep Ocean, 2017–2021) EAPA_165/2016. The Spanish Government contributed through the “Severo Ochoa Centre Excellence” accreditation to ICM-CSIC (CEX2019-000928-S) and the Research Unit Tecnoterra (ICM-CSIC/UPC). UK colleagues were supported by Climate Linked Atlantic Sector Science (CLASS) project supported by NERC National Capability funding (NE/R015953/1).Peer ReviewedArticle signat per 33 autors/es: Nadine Lantéri; Henry A. Ruh; Andrew Gates; Enoc Martínez; Joaquin del Rio Fernandez; Jacopo Aguzzi; Mathilde Cannat; Eric Delory; Davide Embriaco; Robert Huber; Marjolaine Matabos;George Petihakis; Kieran Reilly; Jean-François Rolin; Mike van der Schaar; Michel André; Jérôme Blandin; Andrés Cianca; Marco Francescangeli; Oscar Garcia; Susan Hartman; Jean-Romain Lagadec; Julien Legrand; Paris Pagonis; Jaume Piera; Xabier Remirez; Daniel M. Toma; Giuditta Marinaro; Bertrand Moreau; Raul Santana; Hannah Wright; Juan José Dañobeitia; Paolo FavaliPostprint (published version

    EMSO ERIC: A challenging infrastructure to monitor Essential Ocean Variables (EOVs) across European Seas

    Get PDF
    The European Multidisciplinary Seafoor and water Column Observatory (EMSO, www.emso.eu) is a distributed research infrastructure (RI), composed of fxed-point deep-sea observatories and shallow water test sites at strategic environmental locations from the southern entrance of the Arctic Ocean all the way through the North Atlantic through the Mediterranean to the Black Sea. Working as a single powerful system, it is a valuable new tool for researchers and engineers looking for long time series of high-quality and high-resolution data to study and continuously monitor complex processes interactions among the geosphere, biosphere, hydrosphere and atmosphere, as well as to test, validate and demonstrate new marine technologies.Peer Reviewe

    EMSO ERIC: A challenging infrastructure to monitor Essential Ocean Variables (EOVs) across European Seas

    Get PDF
    Special issue 9th MARTECH: International Workshop on Marine Technology: 16-18 June 2021, Vigo, Spain.-- 2 pages, 1 figureThe European Multidisciplinary Seafoor and water Column Observatory (EMSO, www.emso.eu) is a distributed research infrastructure (RI), composed of fxed-point deep-sea observatories and shallow water test sites at strategic environmental locations from the southern entrance of the Arctic Ocean all the way through the North Atlantic through the Mediterranean to the Black Sea. Working as a single powerful system, it is a valuable new tool for researchers and engineers looking for long time series of high-quality and high-resolution data to study and continuously monitor complex processes interactions among the geosphere, biosphere, hydrosphere and atmosphere, as well as to test, validate and demonstrate new marine technologiesPeer reviewe

    Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice.

    Get PDF
    Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems
    corecore