7 research outputs found

    Composition et dynamique des complexes protéiques impliqués dans le "nonsense-mediated mRNA decay" chez la levure Saccharomyces cerevisiae

    No full text
    Nonsense-Mediated mRNA Decay (NMD) detects and degrades RNA for which translation ends prematurely. It affects a large diversity of cytoplasmics RNAs; it is the major decay pathway for aberrants RNAs.In yeast, NMD targeted RNAs have a short open reading frame and a long 3’-UTR. How these two features lead to an efficient degradation through NMD and what are the steps of this mechanism is still unclear.From 112 affinity purifications of NMD factors followed by an analysis using quantitative mass spectrometry, we identified two distinct complexes. Those complexes were mutually exclusive and both contained Upf1, the major NMD protein. A first complex, named Detector, might have a role in the NMD substrates recognition whereas the second one, named Effector, would initiate the degradation through a direct interaction with the decapping machinery.The factors involved in our new model are all conserved throughout eukaryotes and the steps we describe have potential equivalents in other species. Our data suggest a new paradigm for the NMD mechanism that would be organised around a shared universal base to which specific steps could be added in certain organisms or for certain types of RNA substrates.Le Nonsense-Mediated mRNA Decay (NMD) dĂ©tecte et dĂ©grade les ARNs qui ont une terminaison de la traduction prĂ©coce. Il affecte une grande diversitĂ© d’ARNs cytoplasmiques, c’est la voie majeure de dĂ©gradation des ARNs aberrants.Les ARNs ciblĂ©s par le NMD chez la levure ont une phase ouverte de lecture courte et un long 3’-UTR. Comment ces caractĂ©ristiques permettent une dĂ©gradation efficace par le NMD et quelles sont les Ă©tapes du mĂ©canisme reste peu clair. À partir de 112 purifications d’affinitĂ©s suivies d’une analyse en spectromĂ©trie de masse quantitative, nous avons identifiĂ© deux complexes distincts impliquĂ©s dans le NMD. Ces deux complexes, mutuellement exclusifs, s’articulent autour d’UPF1, la protĂ©ine majeure du NMD. Le premier complexe, nommĂ© DĂ©tecteur, aurait un rĂŽle dans la reconnaissance des cibles alors que le deuxiĂšme complexe, nommĂ© Effecteur, initierait la dĂ©gradation des ARNs par une interaction directe avec la machinerie de dĂ©capping.Les facteurs impliquĂ©s dans ce modĂšle sont tous conservĂ©s Ă  travers les eucaryotes et les Ă©tapes dĂ©crites sont transposables d’aprĂšs la littĂ©rature. Cela semble indiquer un nouveau paradigme pour le mĂ©canisme du NMD qui s’articulerait autour d’une base universelle commune Ă  laquelle pourrait s’ajouter des Ă©tapes spĂ©cifiques des organismes ou des types d’ARNs

    Composition and dynamic of Nonsense-mediated mRNA decay complexes in yeast

    No full text
    Le Nonsense-Mediated mRNA Decay (NMD) dĂ©tecte et dĂ©grade les ARNs qui ont une terminaison de la traduction prĂ©coce. Il affecte une grande diversitĂ© d’ARNs cytoplasmiques, c’est la voie majeure de dĂ©gradation des ARNs aberrants.Les ARNs ciblĂ©s par le NMD chez la levure ont une phase ouverte de lecture courte et un long 3’-UTR. Comment ces caractĂ©ristiques permettent une dĂ©gradation efficace par le NMD et quelles sont les Ă©tapes du mĂ©canisme reste peu clair. À partir de 112 purifications d’affinitĂ©s suivies d’une analyse en spectromĂ©trie de masse quantitative, nous avons identifiĂ© deux complexes distincts impliquĂ©s dans le NMD. Ces deux complexes, mutuellement exclusifs, s’articulent autour d’UPF1, la protĂ©ine majeure du NMD. Le premier complexe, nommĂ© DĂ©tecteur, aurait un rĂŽle dans la reconnaissance des cibles alors que le deuxiĂšme complexe, nommĂ© Effecteur, initierait la dĂ©gradation des ARNs par une interaction directe avec la machinerie de dĂ©capping.Les facteurs impliquĂ©s dans ce modĂšle sont tous conservĂ©s Ă  travers les eucaryotes et les Ă©tapes dĂ©crites sont transposables d’aprĂšs la littĂ©rature. Cela semble indiquer un nouveau paradigme pour le mĂ©canisme du NMD qui s’articulerait autour d’une base universelle commune Ă  laquelle pourrait s’ajouter des Ă©tapes spĂ©cifiques des organismes ou des types d’ARNs.Nonsense-Mediated mRNA Decay (NMD) detects and degrades RNA for which translation ends prematurely. It affects a large diversity of cytoplasmics RNAs; it is the major decay pathway for aberrants RNAs.In yeast, NMD targeted RNAs have a short open reading frame and a long 3’-UTR. How these two features lead to an efficient degradation through NMD and what are the steps of this mechanism is still unclear.From 112 affinity purifications of NMD factors followed by an analysis using quantitative mass spectrometry, we identified two distinct complexes. Those complexes were mutually exclusive and both contained Upf1, the major NMD protein. A first complex, named Detector, might have a role in the NMD substrates recognition whereas the second one, named Effector, would initiate the degradation through a direct interaction with the decapping machinery.The factors involved in our new model are all conserved throughout eukaryotes and the steps we describe have potential equivalents in other species. Our data suggest a new paradigm for the NMD mechanism that would be organised around a shared universal base to which specific steps could be added in certain organisms or for certain types of RNA substrates

    Nonsense‐mediated mRNA decay involves two distinct Upf1‐bound complexes

    No full text
    International audienceNonsense-mediated mRNA decay (NMD) is a translation-dependent RNA degradation pathway involved in many cellular pathways and crucial for telomere maintenance and embryo development. Core NMD factors Upf1, Upf2 and Upf3 are conserved from yeast to mammals, but a universal NMD model is lacking. We used affinity purification coupled with mass spectrometry and an improved data analysis protocol to obtain the first large-scale quantitative characterization of yeast NMD complexes in yeast (112 experiments). Unexpectedly, we identified two distinct complexes associated with Upf1: Detector (Upf1/2/3) and Effector. Effector contained the mRNA decapping enzyme, together with Nmd4 and Ebs1, two proteins that globally affected NMD and were critical for RNA degradation mediated by the Upf1 C-terminal helicase region. The fact that Nmd4 association to RNA was dependent on Detector components and the similarity between Nmd4/Ebs1 and mammalian Smg5-7 proteins suggest that NMD operates through successive Upf1-bound Detector and Effector complexes in other species. This model can be extended to accommodate steps that are missing in yeast, and thus serve for mechanistic studies of NMD in all eukaryotes. Running title: The Detector/Effector NMD mode

    Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH

    No full text
    TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved "topological regions" that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with xeroderma pigmentosum and trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit

    Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH

    No full text
    TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved “topological regions” that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with Xeroderma pigmentosum and Trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit
    corecore