195 research outputs found

    The Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2005

    Full text link
    The Earth Orientation Center of the IERS, located at Paris Observatory, SYRTE, has the task to provide to the scientific community the international reference time series for the Earth Orientation Parameters (EOP), referred as ”IERS C04 ” (Combined 04), resulting from a combination of operational EOP series, each of them associated with a given geodetic technique. The procedure developed to derive the C04 solution was recently upgraded back to 1993. The main objective is to insurre its consistency with respect to the newly release ITRF 2008. Due to the separate determination of both terrestrial reference frames and EOP, there has been a slow degradation of the overall consistency since the least ITRF release in 2005, and discrepancies at the level of 50 micoarseconds for x pole coordinate exists between the current IERS C04 and the ITRF realization. We have taken this opportunity to upgrade the numerical combination procedure. Now there are better estimates of the errors of combined values. Individual EOP series have been reprocessed since 1993. Pole coordinates are now fully consistent with ITRF. The new C04 solution, referred as 08 C04, updated two times per week became the official C04 solution since february 2010

    Long-term evolution of orbits about a precessing oblate planet: 1. The case of uniform precession

    Full text link
    It was believed until very recently that a near-equatorial satellite would always keep up with the planet's equator (with oscillations in inclination, but without a secular drift). As explained in Efroimsky and Goldreich (2004), this opinion originated from a wrong interpretation of a (mathematically correct) result obtained in terms of non-osculating orbital elements. A similar analysis carried out in the language of osculating elements will endow the planetary equations with some extra terms caused by the planet's obliquity change. Some of these terms will be nontrivial, in that they will not be amendments to the disturbing function. Due to the extra terms, the variations of a planet's obliquity may cause a secular drift of its satellite orbit inclination. In this article we set out the analytical formalism for our study of this drift. We demonstrate that, in the case of uniform precession, the drift will be extremely slow, because the first-order terms responsible for the drift will be short-period and, thus, will have vanishing orbital averages (as anticipated 40 years ago by Peter Goldreich), while the secular terms will be of the second order only. However, it turns out that variations of the planetary precession make the first-order terms secular. For example, the planetary nutations will resonate with the satellite's orbital frequency and, thereby, may instigate a secular drift. A detailed study of this process will be offered in the subsequent publication, while here we work out the required mathematical formalism and point out the key aspects of the dynamics

    Measurement of CNGS muon neutrino speed with Borexino

    Get PDF
    We have measured the speed of muon neutrinos with the Borexino detector using short-bunch CNGS beams. The final result for the difference in time-of-flight between a =17 GeV muon neutrino and a particle moving at the speed of light in vacuum is {\delta}t = 0.8 \pm 0.7stat \pm 2.9sys ns, well consistent with zero.Comment: 6 pages, 5 figure

    Demonstrator of Time Services based on European GNSS signals: the H2020 DEMETRA Project

    Get PDF
    During 2015-2016, a European Consortium of 15 partners from 8 different countries, developed the DEMETRA (DEMonstrator of EGNSS services based on Time Reference Architecture), a project funded by the European Union in the frame of the Horizon 2020 program. This project aims at developing and experimenting time dissemination services dedicated to specific users like traffic control, energy distribution, finance, telecommunication, and scientific institutions. Nine services have been developed. These services provide time dissemination with accuracy levels from millisecond to the sub-ns, and also additional services like certification, calibration, or integrity. Five of these services are based on the European GNSS. After a development phase (see PTTI 2016 presentation) the full DEMETRA system has been working during six months for demonstration. The paper will report about the experimentation results, showing performances and limits of the proposed time dissemination services, aiming to foster the exploitation of the European GNSS for timing applications

    Estimation and analysis of multi-GNSS differential code biases using a hardware signal simulator

    Get PDF
    In ionospheric modeling, the differential code biases (DCBs) are a non-negligible error source, which are routinely estimated by the different analysis centers of the International GNSS Service (IGS) as a by-product of their global ionospheric analysis. These are, however, estimated only for the IGS station receivers and for all the satellites of the different GNSS constellations. A technique is proposed for estimating the receiver and satellites DCBs in a global or regional network by first estimating the DCB of one receiver set as reference. This receiver DCB is then used as a ‘known’ parameter to constrain the global ionospheric solution, where the receiver and satellite DCBs are estimated for the entire network. This is in contrast to the constraint used by the IGS, which assumes that the involved satellites DCBs have a zero mean. The ‘known’ receiver DCB is obtained by simulating signals that are free of the ionospheric, tropospheric and other group delays using a hardware signal simulator. When applying the proposed technique for Global Positioning System legacy signals, mean offsets in the order of 3 ns for satellites and receivers were found to exist between the estimated DCBs and the IGS published DCBs. It was shown that these estimated DCBs are fairly stable in time, especially for the legacy signals. When the proposed technique is applied for the DCBs estimation using the newer Galileo signals, an agreement at the level of 1–2 ns was found between the estimated DCBs and the manufacturer’s measured DCBs, as published by the European Space Agency, for the three still operational Galileo in-orbit validation satellites

    Roadmap towards the redefinition of the second

    Get PDF
    This paper outlines the roadmap towards the redefinition of the second, which was recently updated by the CCTF Task Force created by the CCTF in 2020. The main achievements of optical frequency standards (OFS) call for reflection on the redefinition of the second, but open new challenges related to the performance of the OFS, their contribution to time scales and UTC, the possibility of their comparison, and the knowledge of the Earth's gravitational potential to ensure a robust and accurate capacity to realize a new definition at the level of 10-18 uncertainty. The mandatory criteria to be achieved before redefinition have been defined and their current fulfilment level is estimated showing the fields that still needed improvement. The possibility to base the redefinition on a single or on a set of transitions has also been evaluated. The roadmap indicates the steps to be followed in the next years to be ready for a sound and successful redefinition

    Tachyonic Field Theory and Neutrino Mass Running

    Full text link
    In this paper three things are done. (i) We investigate the analogues of Cerenkov radiation for the decay of a superluminal neutrino and calculate the Cerenkov angles for the emission of a photon through a W loop, and for a collinear electron-positron pair, assuming the tachyonic dispersion relation for the superluminal neutrino. The decay rate of a freely propagating neutrino is found to depend on the shape of the assumed dispersion relation, and is found to decrease with decreasing tachyonic mass of the neutrino. (ii) We discuss a few properties of the tachyonic Dirac equation (symmetries and plane-wave solutions), which may be relevant for the description of superluminal neutrinos seen by the OPERA experiment, and discuss the calculation of the tachyonic propagator. (iii) In the absence of a commonly accepted tachyonic field theory, and in view of an apparent "running" of the observed neutrino mass with the energy, we write down a model Lagrangian, which describes a Yukawa-type interaction of a neutrino coupling to a scalar background field via a scalar-minus-pseudoscalar interaction. This constitutes an extension of the standard model. If the interaction is strong, then it leads to a substantial renormalization-group "running" of the neutrino mass and could potentially explain the experimental observations.Comment: 13 pages; RevTeX; to appear in Cent. Eur. J. Phy
    • 

    corecore