13 research outputs found

    Sediment penetration depths of epi- and infaunal ostracods from Lake Geneva (Switzerland)

    Get PDF
    Many (palaeo-)environmental parameters can be deduced from ecological and chemical analyses of ostracods. However, the specific ecology of each taxon has a great impact on its reaction to changing environmental conditions. As a consequence, each taxon records these changes differently. The mean penetration depth (MPD) and relative individual abundances have been documented along sediment depth profiles for the dominant sub-littoral to profundal species of ostracods in western Lake Geneva, Switzerland, and this data can be used to estimate their preferential habitat in terms of sediment depths. Isocypris beauchampi, Limnocytherina sanctipatricii, Cypria ophtalmica forma lacustris at 13-m water depths, Limnocythere inopinata, and a winter generation of Herpetocypris reptans have the shallowest habitat preferences at the study sites (MPDs of 0.45, 0.48, 0.49, 0.60, and 0.81cm, respectively). These results suggest that these populations may be regarded as being preferentially epifaunal forms. Populations of Cytherissa lacustris (MPDs of 0.61, 0.73, and 0.82cm at 13-, 33-, and 70-m water depths, respectively), Cypria ophtalmica forma lacustris at 70m (MPD=0.96cm), Fabaeformiscandona caudata (MPD=0.99cm), and a summer generation of Herpetocypris reptans (MPD=1.03cm) were identified as being infaunal. Candona neglecta is the species that was found the deepest in the sediment of Lake Geneva, with MPDs of 0.65, 1.22, and 1.30cm at 13-, 33-, and 70-m water depths, respectively. Information on the sediment texture and oxygen concentrations inferred from the analyses of sediment pore water suggest that the oxygen content of the sediment pore water is not the only dominant parameter controlling the differences in ostracod sediment penetration depths observed among the different sites, but that they might also be influenced by the sediment ‘softness,' which itself depends on grain size, water content, and the abundance of organic matter in sedimen

    Potential influence of the chemical composition of water on the stable oxygen isotope composition of continental ostracods

    Get PDF
    Many studies in continental areas have successfully used the oxygen isotope composition of fossil ostracod valves to reconstruct past hydrological conditions associated with large changes in climate. Yet, ostracods are known to crystallise their valves out of isotopic equilibrium for oxygen and they generally have higher 18O contents compared to inorganic calcite grown at equilibrium under the same conditions. A review of vital offsets determined for continental ostracods indicates that vital offsets might change from site to site, questioning a potential influence of environmental conditions on oxygen isotope fractionation in ostracods. Results from the literature suggest that pH has no influence on ostracod vital offset. A re-evaluation of results from Li and Liu (J Paleolimnol 43:111-120, 2010) suggests that salinity may influence oxygen isotope fractionation in ostracods, with lower vital offsets for higher salinities. Such a relationship was also observed for the vital offsets determined by Chivas et al. (The ostracoda—applications in quaternary research. American Geophysical Union, Washington, DC, 2002). Yet, when results of all studies are compiled, the correlation between vital offsets and salinity is low while the correlation between vital offsets and host water Mg/Ca is higher, suggesting that ionic composition of water and/or relative abundance of major ions may also control oxygen isotope fractionation in ostracods. Lack of data on host water ionic composition for the different studies precludes more detailed examination at this stage. Further studies such as natural or laboratory cultures done under strictly controlled conditions are needed to better understand the potential influence of varying environmental conditions on oxygen isotope compositions of ostracod valve

    From Naples 1963 to Rome 2013 - A brief review of how the international research group on Ostracoda (IRGO) developed as a social communication system

    Get PDF
    The 1st International Symposiumon Ostracoda (ISO) was held in Naples (1963). The philosophy behind this symposiumand the logical outcome of what is nowknown as the International Research Group on Ostracoda (IRGO) are here reviewed, namely ostracodology over the last 50 years is sociologically analysed. Three different and important historic moments for the scientific achievements of this domain are recognised. The first one, between about 1963 and 1983, is related to applied research for the oil industry aswell as to the great interest in the better description of the marine environment by both zoologists and palaeontologists. Another important aspect during this period was thework by researchers dealing with Palaeozoic ostracods,who had their own discussion group, IRGPO. Gradually, the merger of this latter group with those dealing with post-Palaeozoic ostracods at various meetings improved the communication between the two groups of specialists. A second period was approximately delineated between 1983 and 2003. During this time-slice, more emphasis was addressed to environmental research with topics such as the study of global events and long-term climate change. Ostracodologists profited also from the research "politics" within national and international programmes. Large international research teams emerged using new research methods. During the third period (2003-2013), communication and collaborative research reached a global dimension. Amongst the topics of research we cite the reconstruction of palaeoclimate using transfer functions, the building of large datasets of ostracod distributions for regional and intercontinental studies, and the implementation of actions that should lead to taxonomic harmonisation. Projects within which molecular biological techniques are routinely used, combined with sophisticated morphological information, expanded now in their importance. The documentation of the ostracod description improved through new techniques to visualise morphological details, which stimulated also communication between ostracodologists. Efforts of making available ostracod information through newsletters and electronic media are evoked

    Reconstructing 4000 years of mass movement and tsunami history in a deep peri-Alpine lake (Lake Geneva, France-Switzerland)

    No full text
    The study of mass movements in lake sediments provides insights into past natural hazards at historic and prehistoric timescales. Sediments from the deep basin of Lake Geneva reveal a succession of six large-scale (volumes of 22 × 106 to 250 × 106 m3) mass-transport deposits, associated with five mass-movement events within 2600 years (4000 cal bp to 563 ad). The mass-transport deposits result from: (i) lateral slope failures (mass-transport deposit B at 3895 ± 225 cal bp and mass-transport deposits A and C at 3683 ± 128 cal bp); and (ii) Rhône delta collapses (mass-transport deposits D to G dated at 2650 ± 150 cal bp, 2185 ± 85 cal bp, 1920 ± 120 cal bp and 563 ad, respectively). Mass-transport deposits A and C were most probably triggered by an earthquake, whereas the Rhône delta collapses were likely to be due to sediment overload with a rockfall as the external trigger (mass-transport deposit G, the Tauredunum event in 563 ad known from historical records), an earthquake (mass-transport deposit E) or unknown external triggers (mass-transport deposits D and F). Independent of their origin and trigger mechanisms, numerical simulations show that all of these recorded mass-transport deposits are large enough to have generated at least metre-scale tsunamis during mass movement initiation. Since the Tauredunum event in 563 ad, two small-scale (volumes of 1 to 2 × 106 m3) mass-transport deposits (H and I) are present in the seismic record, both of which are associated with small lateral slope failures. Mass-transport deposits H and I might be related to earthquakes in Lausanne/Geneva (possibly) 1322 ad and Aigle 1584 ad, respectively. The sedimentary record of the deep basin of Lake Geneva, in combination with the historical record, show that during the past 3695 years, at least six tsunamis were generated by mass movements, indicating that the tsunami hazard in the Lake Geneva region should not be neglected, although such events are not frequent with a recurrence time of 0·0016 yr−1

    The implementation of taxonomic harmonisation for Candoninae (Ostracoda, Cypridoidea): A heuristic solution for Fabaeformiscandona tricicatricosa (Diebel and Pietrzeniuk)

    No full text
    International audienceThe concept of Taxonomic Harmonisation (TH) incorporates the search for similarities between taxa mentioned in different data sets and/or taxonomic classification systems, in order to propose a more coherent and homogenous taxonomic system necessary for practical usage in basic and applied scientific activities. For the present project we conceived Fabaeformiscandona tricicatricosa as a species defined by a homeostatic cluster of traits with a given temporal persistence, visible in close relationship with other Fabaeformiscandonaspecies, like F. caudata(Kaufmann), F. levanderi (Hirschmann), and F. siliquosa(Brady), as well as with Candona neglecta Sars which displays analogies in valve shape. We show the advantages to study the above-mentioned taxa by a combination of classic observations in optical microscopy with SEM-techniques and with the treatment of data using geometric morphometrics and multivariate statistics. A protocol for the implementation of the TH of F. tricicatricosa is proposed. We offer a differential diagnosis for F. tricicatricosaas compared to F. caudata, F. levanderi, F. siliquosaand C. neglecta. We use for taxonomic diagnostics a combination of aggregate traits like the average of the outline of valves and qualitative traits, like the shape and the position of a ledge on the posterior side of the valves. We propose to add the term “Consensus” to the species defined by the procedure of the taxonomic harmonisation. To differentiate them from other types of species we propose to use the extension sensu lato following the Linnean species notation. Comments on the origin and the (palaeo)ecology and (palaeo)biogeography of F. tricicatricosaare presented

    Potential influence of the chemical composition of water on the stable oxygen isotope composition of continental ostracods

    No full text
    Many studies in continental areas have successfully used the oxygen isotope composition of fossil ostracod valves to reconstruct past hydrological conditions associated with large changes in climate. Yet, ostracods are known to crystallise their valves out of isotopic equilibrium for oxygen and they generally have higher 18O contents compared to inorganic calcite grown at equilibrium under the same condi- tions. A review of vital offsets determined for continental ostracods indicates that vital offsets might change from site to site, questioning a potential influence of environmental conditions on oxygen isotope fractionation in ostracods. Results from the literature suggest that pH has no influence on ostracod vital offset. A re-evaluation of results from Li and Liu (J Paleolimnol 43:111-120, 2010) suggests that salin- ity may influence oxygen isotope fractionation in ostracods, with lower vital offsets for higher salinities. Such a relationship was also observed for the vital offsets determined by Chivas et al. (The ostracoda- applications in quaternary research. American Geo- physical Union, Washington, DC, 2002). Yet, when results of all studies are compiled, the correlation between vital offsets and salinity is low while the correlation between vital offsets and host water Mg/Ca is higher, suggesting that ionic composition of water and/or relative abundance of major ions may also control oxygen isotope fractionation in ostracods. Lack of data on host water ionic composition for the different studies precludes more detailed examination at this stage. Further studies such as natural or laboratory cultures done under strictly controlled conditions are needed to better understand the potential influence of varying environmental condi- tions on oxygen isotope compositions of ostracod valves

    Controls on ostracod valve geochemistry: Part 2. Carbon and oxygen isotope compositions

    No full text
    The stable carbon and oxygen isotope compositions of fossil ostracods are powerful tools to estimate past environmental and climatic conditions. The basis for such interpretations is that the calcite of the valves reflects the isotopic composition of water and its temperature of formation. However, calcite of ostracods is known not to form in isotopic equilibrium with water and different species may have different offsets from inorganic precipitates of calcite formed under the same conditions. To estimate the fractionation during ostracod valve calcification, the oxygen and carbon isotope compositions of 15 species living in Lake Geneva were related to their autoecology and the environmental parameters measured during their growth. The results indicate that: (1) Oxygen isotope fractionation is similar for all species of Candoninae with an enrichment in 18O of more than 30/00 relative to equilibrium values for inorganic calcite. Oxygen isotope fractionation for Cytheroidea is less discriminative relative to the heavy oxygen, with enrichments in 18O for these species of 1.7 to 2.30/00. Oxygen isotope fractionations for Cyprididae are in-between those of Candoninae and Cytheroidea. The difference in oxygen isotope fractionation between ostracods and inorganic calcite has been interpreted as resulting from a vital effect. (2) Comparison with previous work suggests that oxygen isotope fractionation may depend on the total and relative ion content of water. (3) Carbon isotope compositions of ostracod valves are generally in equilibrium with DIC. The specimens' δ13C values are mainly controlled by seasonal variations in δ13CDIC of bottom water or variation thereof in sediment pore water. (4) Incomplete valve calcification has an effect on carbon and oxygen isotope compositions of ostracod valves. Preferential incorporation of at the beginning of valve calcification may explain this effect. (5) Results presented here as well as results from synthetic carbonate growth indicate that different growth rates or low pH within the calcification site cannot be the cause of oxygen isotope 'vital effects' in ostracods. Two mechanisms that might enrich the 18O of ostracod valves are deprotonation of that may also contribute to valve calcification, and effects comparable to salt effects with high concentrations of Ca and/or Mg within the calcification site that may also cause a higher temperature dependency of oxygen isotope fractionation
    corecore