64 research outputs found

    Observation of Target Electron Momentum Effects in Single-Arm M\o ller Polarimetry

    Full text link
    In 1992, L.G. Levchuk noted that the asymmetries measured in M\o ller scattering polarimeters could be significantly affected by the intrinsic momenta of the target electrons. This effect is largest in devices with very small acceptance or very high resolution in laboratory scattering angle. We use a high resolution polarimeter in the linac of the polarized SLAC Linear Collider to study this effect. We observe that the inclusion of the effect alters the measured beam polarization by -14% of itself and produces a result that is consistent with measurements from a Compton polarimeter. Additionally, the inclusion of the effect is necessary to correctly simulate the observed shape of the two-body elastic scattering peak.Comment: 29 pages, uuencoded gzip-compressed postscript (351 kb). Uncompressed postscript file (898 kb) available to DECNET users as SLC::USER_DISK_SLC1:[MORRIS]levpre.p

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase

    HighP–TNano-Mechanics of Polycrystalline Nickel

    Get PDF
    We have conducted highP–Tsynchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume–pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify “micro/local” yield due to high stress concentration at the grain-to-grain contacts and “macro/bulk” yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under highP–Tconditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 Tm) hardens nanocrystalline Ni, leading to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    The Physics of the B Factories

    Get PDF

    Wide-ranging timescales of subsurface phosphorus transport from field to stream in a tile drained landscape

    No full text
    In agricultural areas with poorly drained soils, subsurface tile drains are commonly installed to improve drainage but also serve as conduits that deliver excess nutrients to adjacent streams. Our goal was to understand the transport of phosphorus (P) along these flow paths by applying a novel mixture of tracers (including 866 g of conservative chloride (Cl), 3.4 g of potassium phosphate, and approximately 3.6 × 1011 fluorescent micrometer-sized particles, or 49.5 g) to a farm field and sampling their breakthrough curves at the outlet to a stream, approximately 30 m away. Simultaneously, we performed a 26-h time-lapse electrical resistivity tomography (ERT) survey to monitor the saline tracer migration in three dimensions every 0.5 to 1 h. The initial pulse of tracers had a mean arrival time of 21 min and transported 262 g of added Cl (28 %), 0.65 g of dissolved P (17 %), and 1.4 × 1010 particles (4 %) to the tile drain outlet. A stochastic mobile-immobile model fit the anomalous (non-Fickian) solute breakthrough curves, where the mobile zone represents the macropore and tile drain network, and the immobile zone represents the soil matrix. Residence times in the immobile zone exhibited a heavy (power-law) tail. ERT images confirmed the retention of tracer mixture in soils after concentrations were no longer measurable at the tile drain outlet. Core samples suggest that 96 % of particles and 21 % of dissolved P were retained within 10.5 cm of the application location. Solutes and particles were remobilized over longer timescales during three successive storms. Exported masses of Cl and dissolved P at the tile drain outlet ranged from 1,490–12,300 g and 25.7–65.2 g, respectively, indicating flushing of older Cl and P stored in soils before the tracer experiment. Less than 0.01 % of the added fluorescent particles were flushed during these storm events. This study indicates the wide range of P travel times through the subsurface in tile drained landscapes and the need to incorporate non-Fickian transport behavior in models
    corecore