48 research outputs found

    Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Candidate gene and genome-wide association studies have both reproducibly identified several common Single Nucleotide Polymorphisms (SNPs) that confer type 2 diabetes (T2D) risk in European populations. Our aim was to evaluate the contribution to T2D of five of these established T2D-associated loci in the Arabic population from Tunisia.</p> <p>Methods</p> <p>A case-control design comprising 884 type 2 diabetic patients and 513 control subjects living in the East-Center of Tunisia was used to analyze the contribution to T2D of the following SNPs: E23K in <it>KCNJ11/Kir6.2</it>, K121Q in <it>ENPP1</it>, the -30G/A variant in the pancreatic β-cell specific promoter of Glucokinase, rs7903146 in <it>TCF7L2 </it>encoding transcription factor 7-like2, and rs7923837 in <it>HHEX </it>encoding the homeobox, hematopoietically expressed transcription factor.</p> <p>Results</p> <p><it>TCF7L2</it>-rs7903146 T allele increased susceptibility to T2D (OR = 1.25 [1.06–1.47], <it>P </it>= 0.006) in our study population. This risk was 56% higher among subjects carrying the TT genotype in comparison to those carrying the CC genotype (OR = 1.56 [1.13–2.16], <it>P </it>= 0.002). No allelic or genotypic association with T2D was detected for the other studied polymorphisms.</p> <p>Conclusion</p> <p>In the Tunisian population, <it>TCF7L2</it>-rs7903146 T allele confers an increased risk of developing T2D as previously reported in the European population and many other ethnic groups. In contrast, none of the other tested SNPs that influence T2D risk in the European population was associated with T2D in the Tunisian Arabic population. An insufficient power to detect minor allelic contributions or genetic heterogeneity of T2D between different ethnic groups can explain these findings.</p

    A Genome-Wide Association Study Identifies rs2000999 as a Strong Genetic Determinant of Circulating Haptoglobin Levels

    Get PDF
    Haptoglobin is an acute phase inflammatory marker. Its main function is to bind hemoglobin released from erythrocytes to aid its elimination, and thereby haptoglobin prevents the generation of reactive oxygen species in the blood. Haptoglobin levels have been repeatedly associated with a variety of inflammation-linked infectious and non-infectious diseases, including malaria, tuberculosis, human immunodeficiency virus, hepatitis C, diabetes, carotid atherosclerosis, and acute myocardial infarction. However, a comprehensive genetic assessment of the inter-individual variability of circulating haptoglobin levels has not been conducted so far

    Pairing patterns in relation to body size, genetic similarity and multilocus heterozygosity in a tropical monogamous bird species.

    No full text
    9 pagesInternational audienceThe relative influence of genetic and phenotypic quality on pairing status and mating patterns in socially monogamous species remains poorly documented. We studied social status and pairing patterns in relation to genetic similarity and multilocus heterozygosity (MLH) estimates from 11 microsatellite markers, and both tarsus length and wing chord (as a measure of competitive ability in territorial defence) in a socially monogamous tropical bird species where individuals defend territories year-round, alone or in pairs, the Zenaida dove, Zenaida aurita. Tarsus length and wing chord did not differ between unpaired territorial birds and paired ones in either sex, whereas paired females, but not paired males, tended to be more heterozygous than unpaired ones. Among 84 pairs, we found no evidence for assortative mating for tarsus length, wing chord, MLH or genetic similarity. However, within pairs, male wing chord was positively related to female MLH and female tarsus length was positively related to male MLH, with no evidence for local effects, suggesting assortative mating by individual quality. Although the observed pattern of mating in Zenaida doves may be the product of mutual mate choice, further assessment of this hypothesis requires direct investigation of both mating preference in each sex and lifetime reproductive success in relation to body size and MLH

    New ABCC8 mutations in relapsing neonatal diabetes and clinical features.

    No full text
    Activating mutations in the ABCC8 gene that encodes the sulfonylurea receptor 1 (SUR1) regulatory subunit of the pancreatic islet ATP-sensitive K(+) channel (K(ATP) channel) cause both permanent and transient neonatal diabetes. Recently, we have described the novel mechanism where basal Mg-nucleotide-dependent stimulatory action of SUR1 on the Kir6.2 pore is increased. In our present study, we identified six new heterozygous ABCC8 mutations, mainly in patients presenting the transient form of neonatal diabetes (six of eight), with a median duration of initial insulin therapy of 17 months (range 0.5-38.0). Most of these mutations map to key functional domains of SUR1. Whereas Kir6.2 mutations are a common cause of permanent neonatal diabetes and in a few cases associate with the DEND (developmental delay, epilepsy, and neonatal diabetes) syndrome, SUR1 mutations are more frequent in transient (52%) compared with permanent (14%) neonatal diabetes cases screened for ABCC8 in our series. Although ketoacidosis is frequent at presentation, SUR1 mutations associate mainly with transient hyperglycemia, with possible recurrence later in life. One-half of the SUR1 neonatal diabetic patients presented with de novo mutations. In some familial cases, diabetes is not always present in the adult carriers of SUR1 mutations, supporting variability in their clinical expressivity that remains to be fully explained

    Genetic analysis of ADIPOR1 and ADIPOR2 candidate polymorphisms for type 2 diabetes in the Caucasian population.

    No full text
    Adiponectin is a metabolic link between adipose tissue and insulin action, mediating part of obesity-associated insulin resistance and type 2 diabetes. Two adiponectin receptors have been identified, and we investigated whether sequence variations in adiponectin receptor 1 (ADIPOR1) and adiponectin receptor 2 (ADIPOR2) genes could contribute to the genetic risk for type 2 diabetes in a case-control study of 1,498 Caucasian subjects. We sequenced the putative functional regions of the two genes in 48 subjects and selected single nucleotide polymorphisms (SNPs) from the public database. Five SNPs in ADIPOR1 and 12 in ADIPOR2 were tested for association with type 2 diabetes. No SNP of ADIPOR1 showed association in any of the samples from the French population. In contrast, three SNPs of ADIPOR2 showed nominal evidence for association with type 2 diabetes before correction for multiple testing (odds ratio [OR] 1.29-1.37, P = 0.034-0.014); only rs767870, located in intron 6, was replicated in an additional diabetes dataset (n = 636, OR 1.29, P = 0.020) with significant allelic association from the overall meta-analysis of 2,876 subjects (adjusted OR 1.25 [95% CI 1.07-1.45], P = 0.0051). In conclusion, our data suggest a modest contribution of ADIPOR2 variants in diabetes risk in the French population

    What Is the Best NGS Enrichment Method for the Molecular Diagnosis of Monogenic Diabetes and Obesity?

    Get PDF
    Molecular diagnosis of monogenic diabetes and obesity is of paramount importance for both the patient and society, as it can result in personalized medicine associated with a better life and it eventually saves health care spending. Genetic clinical laboratories are currently switching from Sanger sequencing to next-generation sequencing (NGS) approaches but choosing the optimal protocols is not easy. Here, we compared the sequencing coverage of 43 genes involved in monogenic forms of diabetes and obesity, and variant detection rates, resulting from four enrichment methods based on the sonication of DNA (Agilent SureSelect, RainDance technologies), or using enzymes for DNA fragmentation (Illumina Nextera, Agilent HaloPlex). We analyzed coding exons and untranslated regions of the 43 genes involved in monogenic diabetes and obesity. We found that none of the methods achieves yet full sequencing of the gene targets. Nonetheless, the RainDance, SureSelect and HaloPlex enrichment methods led to the best sequencing coverage of the targets; while the Nextera method resulted in the poorest sequencing coverage. Although the sequencing coverage was high, we unexpectedly found that the HaloPlex method missed 20% of variants detected by the three other methods and Nextera missed 10%. The question of which NGS technique for genetic diagnosis yields the highest diagnosis rate is frequently discussed in the literature and the response is still unclear. Here, we showed that the RainDance enrichment method as well as SureSelect, which are both based on the sonication of DNA, resulted in a good sequencing quality and variant detection, while the use of enzymes to fragment DNA (HaloPlex or Nextera) might not be the best strategy to get an accurate sequencing
    corecore