12 research outputs found

    A Temporal -omic Study of Propionibacterium freudenreichii CIRM-BIA1T Adaptation Strategies in Conditions Mimicking Cheese Ripening in the Cold

    Get PDF
    Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival

    The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications

    Get PDF
    Background: Propionibacterium freudenreichii is essential as a ripening culture in Swiss-type cheeses and is also considered for its probiotic use [1]. This species exhibits slow growth, low nutritional requirements, and hardiness in many habitats. It belongs to the taxonomic group of dairy propionibacteria, in contrast to the cutaneous species P. acnes. The genome of the type strain, P. freudenreichii subsp. shermanii CIRM-BIA1 (CIP 103027T), was sequenced with an 11-fold coverage. Methodology/Principal Findings: The circular chromosome of 2.7 Mb of the CIRM-BIA1 strain has a GC-content of 67% and contains 22 different insertion sequences (3.5% of the genome in base pairs). Using a proteomic approach, 490 of the 2439 predicted proteins were confirmed. The annotation revealed the genetic basis for the hardiness of P. freudenreichii, as the bacterium possesses a complete enzymatic arsenal for de novo biosynthesis of aminoacids and vitamins (except panthotenate and biotin) as well as sequences involved in metabolism of various carbon sources, immunity against phages, duplicated chaperone genes and, interestingly, genes involved in the management of polyphosphate, glycogen and trehalose storage. The complete biosynthesis pathway for a bifidogenic compound is described, as well as a high number of surface proteins involved in interactions with the host and present in other probiotic bacteria. By comparative genomics, no pathogenicity factors found in P. acnes or in other pathogenic microbial species were identified in P. freudenreichii, which is consistent with the Generally Recognized As Safe and Qualified Presumption of Safety status of P. freudenreichii. Various pathways for formation of cheese flavor compounds were identified: the Wood-Werkman cycle for propionic acid formation, amino acid degradation pathways resulting in the formation of volatile branched chain fatty acids, and esterases involved in the formation of free fatty acids and esters. Conclusions/Significance: With the exception of its ability to degrade lactose, P. freudenreichii seems poorly adapted to dairy niches. This genome annotation opens up new prospects for the understanding of the P. freudenreichii probiotic activity

    2014, une année avec le CNRS en Bretagne et Pays de la Loire

    No full text
    Livret d'information sur l'activité du cNRS en Bretagne - PDL« 2014, une année avec le CNRS en Bretagne et Pays de la Loire » vousinvite à découvrir la diversité et la richesse des recherches menées surce large territoire. Les actualités scientifiques de cette brochure dans lesdomaines du vivant, sociétés et numérique, matière, terre et univers, sontissues de nos quarante-sept unités mixtes de recherche et démontrent lavitalité de nos relations partenariales. Ces faits marquants témoignentsurtout de l’engagement des chercheurs, enseignant-chercheurs,personnels administratifs et techniques au service de la recherche, etleur attachement à dépasser les frontières de la connaissance tout en lespartageant avec la société

    2015, une année avec le CNRS en Bretagne et Pays de la Loire

    No full text
    Livret d'information sur l'activité du CNRS en région Bretagne PDLCette nouvelle édition "2015, une année avec le CNRS en Bretagne et Pays de laLoire" vous fera découvrir quelques faits marquants issus de nos laboratoires dansles domaines du vivant, sociétés et numérique, matière et Terre et univers.Tous ces résultats sont le fruit d'une recherche menée en lien étroit avec nospartenaires de l'enseignement supérieur et de la recherche bretons et ligériens,unis derrière le projet fédérateur de Communauté d’universités et d’établissementsBretagne Loire (UBL). Ces projets ont bénéficié du soutien de l'Union Européenne,des régions Bretagne et Pays de la Loire et de l'Agence nationale de la recherche.De plus, les collaborations de recherche avec le tissu socio-économique peuventapporter des réponses aux besoins de la société grâce à des innovations et destransferts de technologie possibles à travers la participation du CNRS à la SATT Ouestvalorisation et à l’IRT Jules Verne

    Phosphole-based π-conjugated electroluminescent materials for OLEDs

    No full text
    International audienceNovel mixed phosphole-fluorene π-conjugated systems have been prepared using the Fagan-Nugent route. Their optical (UV-visible absorption, fluorescence spectra) and electrochemical properties have been systematically evaluated. The variation of the substitution pattern of phosphole derivatives and chemical modification of their P atoms afford thermally stable derivatives which are photoluminescent. The use of these derivatives as emitters in OLEDs strongly depends on the substituent linked on the P-atom. The gold complexes are not stable electroluminescent materials since they decompose rapidly when the devices are operating. In contrast, the thiooxophospholes are stable electroluminescent materials, and the OLEDs incorporating these derivatives as emitters display very high performances

    Projet Micropolit. Synthèse sur l’évaluation des impacts sur les différents sites ateliers en matière de biodiversité et de bioaccumulation. Compartiment biote

    No full text
    Le projet Micropolit a eu pour objectif de décrire et de suivre l'évolution de la qualité du milieu littoral sud aquitain avec une approche pluri-disciplinaire, spatiotemporelle et en considérant plusieurs compartiments (eau/sédiment/biote). Ce document a vocation de synthétiser pour chaque biote les sites concernés, les molécules recherchées et les principaux résultats obtenus. Chaque fiche est indépendante. Pour de plus amples détails, se reporter aux publications ou aux autres livrables (dont celui sur les protocoles de collecte, mesures, préparation et stockage des échantillons biologiques en vue de leurs analyses chimiques). Un bilan synthétique des productions pour ce volet biote est présenté en fin de document. Échantillons biologiques considérés : I.   Espèces commerciales (poissons et crevettes avec parasites dans le cas du merlu) II.  Espèce amphihaline (anguille européenne) III.  Zooplancton IV. Goéland leucophée V.  Taxons biodiversité benthique VI. Microorganismes procaryote
    corecore