7 research outputs found

    MANAGEMENT OF MICROBIAL BIOFILM USING NANO PARTICLE: A REVIEW

    Get PDF
    Microorganisms create biofilms, which are surface adherent community structures. These biofilms are essential to the infection process mediated by microbes. Antibiotic resistance is another thing that biofilm spreads, which is a big worry these days. Diverse bacteria use diverse mechanisms to create biofilms, and these mechanisms often depend on the environment in which they grow as well as strain-specific characteristics. Many chemical compounds are discovered to be useful in investigating the biofilm management method. The usefulness of nanoparticles in preventing biofilm-mediated disease is the subject of the current review. Using nanoscale particles to fight microbial biofilm is one possible way to treat these persistent diseases. Recently, antibacterial agents have been delivered employing innovative nanotechnology-based antimicrobial activity in order to destroy planktonic bacteria and their biofilm structures. In the sphere of medicine, this technique is now considered developing. Antimicrobial-loaded nanoparticles alone or in combination with other materials could increase the bacterial activity of nanomaterials to prevent the formation of biofilms. These particles are reactive substances that readily penetrate the matrix, serving as a barrier to numerous antibodies. One type of nanoparticle, called AgNPs, exhibited antibacterial action by rupturing the integrity of the bacterial cell membrane, which resulted in the release of cellular content and eventual death. Additionally, polymeric-based formulations like hydrogel, polymeric microspheres, nanospheres, and smart olimer, as well as lipid-based nanoparticles like liposomes and solid lipid nanoparticles, have been used in the biofilm treatment. Additionally, research is ongoing with various metals like copper, zinc, and their oxides. Here, we talked about the safety issues and the promise of metal oxide nanoparticles. The pathogens are effectively killed by NPs without endangering other cells or having any negative effects on living cells

    SARS-CoV-2 seroprevalence among the general population and healthcare workers in India, December 2020–January 2021

    No full text
    Background: Earlier serosurveys in India revealed seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) of 0.73% in May–June 2020 and 7.1% in August–September 2020. A third serosurvey was conducted between December 2020 and January 2021 to estimate the seroprevalence of SARS-CoV-2 infection among the general population and healthcare workers (HCWs) in India. Methods: The third serosurvey was conducted in the same 70 districts as the first and second serosurveys. For each district, at least 400 individuals aged ≥10 years from the general population and 100 HCWs from subdistrict-level health facilities were enrolled. Serum samples from the general population were tested for the presence of immunoglobulin G (IgG) antibodies against the nucleocapsid (N) and spike (S1-RBD) proteins of SARS-CoV-2, whereas serum samples from HCWs were tested for anti-S1-RBD. Weighted seroprevalence adjusted for assay characteristics was estimated. Results: Of the 28,598 serum samples from the general population, 4585 (16%) had IgG antibodies against the N protein, 6647 (23.2%) had IgG antibodies against the S1-RBD protein, and 7436 (26%) had IgG antibodies against either the N protein or the S1-RBD protein. Weighted and assay-characteristic-adjusted seroprevalence against either of the antibodies was 24.1% [95% confidence interval (CI) 23.0–25.3%]. Among 7385 HCWs, the seroprevalence of anti-S1-RBD IgG antibodies was 25.6% (95% CI 23.5–27.8%). Conclusions: Nearly one in four individuals aged ≥10 years from the general population as well as HCWs in India had been exposed to SARS-CoV-2 by December 2020

    Test of light-lepton universality in Ï„\tau decays with the Belle II experiment

    No full text
    International audienceWe present a measurement of the ratio Rμ=B(τ−→μ−νˉμντ)/B(τ−→e−νˉeντ)R_\mu = \mathcal{B}(\tau^-\to \mu^-\bar\nu_\mu\nu_\tau) / \mathcal{B}(\tau^-\to e^-\bar\nu_e\nu_\tau) of branching fractions B\mathcal{B} of the τ\tau lepton decaying to muons or electrons using data collected with the Belle II detector at the SuperKEKB e+e−e^+e^- collider. The sample has an integrated luminosity of 362 fb−1^{-1} at a centre-of-mass energy of 10.58 GeV. Using an optimised event selection, a binned maximum likelihood fit is performed using the momentum spectra of the electron and muon candidates. The result, Rμ=0.9675±0.0007±0.0036R_\mu = 0.9675 \pm 0.0007 \pm 0.0036, where the first uncertainty is statistical and the second is systematic, is the most precise to date. It provides a stringent test of the light-lepton universality, translating to a ratio of the couplings of the muon and electron to the WW boson in τ\tau decays of 0.9974±0.00190.9974 \pm 0.0019, in agreement with the standard model expectation of unity
    corecore