32 research outputs found

    Comprehensive phenotypic and genomic analyses of life-cycle variation in Arabidopsis thaliana

    Get PDF
    Natural variation of life history strategies is modulated by both natural selection and physiological constraints. In this study, variation and co-variation of life history traits at the phenotypic and genomic level were studied in details in the model plant species Arabidopsis thaliana in order to elucidate the genetic and environmental factors controlling life-cycle evolution. Natural variation for growth rate, flowering time, primary seed dormancy and secondary seed dormancy were measured in a common environment across a set of 161 A. thaliana genotypes isolated from various locations throughout the species’ range. The results show that natural variation of life-cycle strategies was continuous. An antagonistic pattern of co-variation between flowering time and growth rate was observed. These two traits were negatively or positively correlated respectively depending on the latitude of origin of the genotypes. Functionality of FRIGIDA, a gene previously identified as a major contributor to flowering time variation, was associated with distinct evolutionary trajectories characterized by different patterns of co-variation between life history traits. Indeed, two negative correlations were observed specifically among genotypes carrying functional FRIGIDA allele: between flowering time and primary dormancy as well as between primary dormancy and secondary dormancy. These results indicate that selection on and trade-offs among traits controlling life-cycle strategies change along the distribution range of A. thaliana and are influenced by FRIGIDA functionality. Moreover, natural variation of four life history traits, primary dormancy, secondary dormancy, seedling growth rate and stem leaf number at flowering timing, followed a latitudinal gradient indicating that these traits are involved in local adaptation. Climatic parameters related to temperature and precipitation influenced different life history traits across the distribution range of the species or depending on the functionality of FRIGIDA. The genetic basis of life history variation in Arabidopsis thaliana was studied at fine and large scales, first focusing specifically on the nucleotidic diversity of a dormancy QTL (DOG1), second at the genomic level using the newly developed genome-wide association mapping method (GWA) developed by M. Nordborg and his team (Atwell et al. 2010). For exon1 of DOG1, non synonymous substitution rate was higher than synonymous substitution rate which is rare. It could be the result of independent selective events in populations isolated by glacial cycles. Only rare alleles based on non synonymous substitutions in exon1 were associated with primary dormancy, alleles in high frequency were significantly associated with flowering timing. This probable false positive association was first detected using the unified mixed model method initially developed by E.S. Buckler (2006), in collaboration with B. Stich and then confirmed with GWA method using a larger sample. The detection of this false positive revealed linkage disequilibrium between DOG1 and flowering time genes which is most likely the result of a simultaneous selection on these genes. FLC was significantly associated with primary dormancy and flowering time indicating pleiotropic effect. These results provided some light concerning genetic control of co-variation between life history traits. DOG1 was not significantly associated with primary dormancy probably because expression level of this gene influences as well phenotypic variation. Finally, GWA method allowed detection of new candidate genes controlling life history traits. SPT gene which controls final leaf size was found as a vegetative growth rate QTL

    Co-Variation between Seed Dormancy, Growth Rate and Flowering Time Changes with Latitude in Arabidopsis thaliana

    Full text link
    Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.<br

    Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet

    Get PDF
    Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment

    Author Response: Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet

    Get PDF
    Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modelling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including GWAS and QTL approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment

    Pearl Millet Genome: Lessons from a Tough Crop

    No full text
    International audiencePearl millet is an important cereal for food security in the arid regions of Africa and India. The recently published genome of this tough cereal crop has shed new light on its history and adaptation to dry, hot climates and paves the way for much-needed genomic-based breeding efforts

    Quantitative disease resistance to the bacterial pathogen Xanthomonas campestris involves an Arabidopsis immune receptor pair and a gene of unknown function

    No full text
    Although quantitative disease resistance (QDR) is a durable and broad-spectrum form of resistance in plants, the identification of the genes underlying QDR is still in its infancy. RKS1 (Resistance relatedKinaSe1) has been reported recently to confer QDR in Arabidopsis thaliana to most but not all races of the bacterial pathogen Xanthomonas campestris pv. campestris (Xcc). We therefore explored the genetic bases of QDR in A.thaliana to diverse races of X.campestris (Xc). A nested genome-wide association mapping approach was used to finely map the genomic regions associated with QDR to Xcc12824 (race 2) and XccCFBP6943 (race 6). To identify the gene(s) implicated in QDR, insertional mutants (T-DNA) were selected for the candidate genes and phenotyped in response to Xc. We identified two major QTLs that confer resistance specifically to Xcc12824 and XccCFBP6943. Although QDR to Xcc12824 is conferred by At5g22540 encoding for a protein of unknown function, QDR to XccCFBP6943 involves the well-known immune receptor pair RRS1/RPS4. In addition to RKS1, this study reveals that three genes are involved in resistance to Xc with strikingly different ranges of specificity, suggesting that QDR to Xc involves a complex network integrating multiple response pathways triggered by distinct pathogen molecular determinants

    An Atypical Kinase under Balancing Selection Confers Broad-Spectrum Disease Resistance in Arabidopsis

    Get PDF
    International audienceThe failure of gene-for-gene resistance traits to provide durable and broad-spectrum resistance in an agricultural context has led to the search for genes underlying quantitative resistance in plants. Such genes have been identified in only a few cases, all for fungal or nematode resistance, and encode diverse molecular functions. However, an understanding of the molecular mechanisms of quantitative resistance variation to other enemies and the associated evolutionary forces shaping this variation remain largely unknown. We report the identification, map-based cloning and functional validation of QRX3 (RKS1, Resistance related KinaSe 1), conferring broad-spectrum resistance to Xanthomonas campestris (Xc), a devastating worldwide bacterial vascular pathogen of crucifers. RKS1 encodes an atypical kinase that mediates a quantitative resistance mechanism in plants by restricting bacterial spread from the infection site. Nested Genome-Wide Association mapping revealed a major locus corresponding to an allelic series at RKS1 at the species level. An association between variation in resistance and RKS1 transcription was found using various transgenic lines as well as in natural accessions, suggesting that regulation of RKS1 expression is a major component of quantitative resistance to Xc. The co-existence of long lived RKS1 haplotypes in A. thaliana is shared with a variety of genes involved in pathogen recognition, suggesting common selective pressures. The identification of RKS1 constitutes a starting point for deciphering the mechanisms underlying broad spectrum quantitative disease resistance that is effective against a devastating and vascular crop pathogen. Because putative RKS1 orthologous have been found in other Brassica species, RKS1 provides an exciting opportunity for plant breeders to improve resistance to black rot in crops

    Data from: DOG1 expression is predicted by the seed-maturation environment and contributes to geographic variation in germination in Arabidopsis thaliana.

    No full text
    Seasonal germination timing of Arabidopsis thaliana strongly influences overall life history expression and is the target of intense natural selection. This seasonal germination timing depends strongly on the interaction between genetics and seasonal environments both before and after seed dispersal. DELAY OF GERMINATION 1 (DOG1) is the first gene that has been identified to be associated with natural variation in primary dormancy in Arabidopsis thaliana. Here, we report inter-accession variation in DOG1 expression and document that DOG1 expression is associated with seed-maturation temperature effects on germination; DOG1 expression increased when seeds were matured at low temperature, and this increased expression was associated with increased dormancy of those seeds. Variation in DOG1 expression suggests a geographical structure such that southern accessions, which are more dormant, tend to initiate DOG1 expression earlier during seed maturation and achieved higher expression levels at the end of silique development than did northern accessions. Although elimination of the synthesis of phytohormone ABA results in the elimination of maternal temperature effects on dormancy, DOG1 expression predicted dormancy better than expression of genes involved in ABA metabolism
    corecore