729 research outputs found

    Controls on the spatial distribution of oceanic <i>δ</i><sup>13</sup>C<sub>DIC</sub>

    Get PDF
    We describe the design and evaluation of a large ensemble of coupled climate–carbon cycle simulations with the Earth system model of intermediate complexity GENIE. This ensemble has been designed for application to a range of carbon cycle questions, including the causes of late- Quaternary fluctuations in atmospheric CO2. Here we evaluate the ensemble by applying it to a transient experiment over the recent industrial era (1858 to 2008 AD). We employ singular vector decomposition and principal component emulation to investigate the spatial modes of ensemble variability of oceanic dissolved inorganic carbon (DIC) δ13C, considering both the spun-up pre-industrial state and the transient change. These analyses allow us to separate the natural (preindustrial) and anthropogenic controls on the δ13CDIC distribution. We apply the same dimensionally reduced emulation techniques to consider the drivers of the spatial uncertainty in anthropogenic DIC. We show that the sources of uncertainty related to the uptake of anthropogenic δ13CDIC and DIC are quite distinct. Uncertainty in anthropogenic δ13C uptake is controlled by air–sea gas exchange, which explains 63% of modelled variance. This mode of variability is largely absent from the ensemble variability in CO2 uptake, which is rather driven by uncertainties in thermocline ventilation rates. Although the need to account for air–sea gas exchange is well known, these results suggest that, to leading order, uncertainties in the ocean uptake of anthropogenic 13C and CO2 are governed by very different processes. This illustrates the difficulties in reconstructing one from the other, and furthermore highlights the need for careful targeting of both δ13CDIC and DIC observations to better constrain the ocean sink of anthropogenic CO2

    Nitrate enrichment does not affect enteropathogenic Escherichia coli in aquatic microcosms but may affect other strains present in aquatic habitats

    Get PDF
    Eutrophication of the planet’s aquatic systems is increasing at an unprecedented rate. In freshwater systems, nitrate—one of the nutrients responsible for eutrophication—is linked to biodiversity losses and ecosystem degradation. One of the main sources of freshwater nitrate pollution in New Zealand is agriculture. New Zealand’s pastoral farming system relies heavily on the application of chemical fertilisers. These fertilisers in combination with animal urine, also high in nitrogen, result in high rates of nitrogen leaching into adjacent aquatic systems. In addition to nitrogen, livestock waste commonly carries human and animal enteropathogenic bacteria, many of which can survive in freshwater environments. Two strains of enteropathogenic bacteria found in New Zealand cattle, are K99 and Shiga-toxin producing Escherichia coli (STEC). To better understand the effects of ambient nitrate concentrations in the water column on environmental enteropathogenic bacteria survival, a microcosm experiment with three nitrate-nitrogen concentrations (0, 1, and 3 mg NO3-N/L), two enteropathogenic bacterial strains (STEC O26—human, and K99—animal), and two water types (sterile and containing natural microbiota) was run. Both STEC O26 and K99 reached 500 CFU/10 ml in both water types at all three nitrate concentrations within 24 hours and remained at those levels for the full 91 days of the experiment. Although enteropathogenic strains showed no response to water column nitrate concentrations, the survival of background Escherichia coli, imported as part of the in-stream microbiota did, surviving longer in 1 and 3 mg NO3-N/L concentrations (P < 0.001). While further work is needed to fully understand how nitrate enrichment and in-stream microbiota may affect the viability of human and animal pathogens in freshwater systems, it is clear that these two New Zealand strains of STEC O26 and K99 can persist in river water for extended periods alongside some natural microbiota

    Macroinvertebrate community composition and diversity in ephemeral and perennial ponds on unregulated floodplain meadows in the UK

    Get PDF
    © 2016 Springer International Publishing SwitzerlandPonds are common and abundant landscape features in temperate environments, particularly on floodplains where lateral connectivity with riverine systems persists. Despite their widespread occurrence and importance to regional diversity, research on the ecology and hydrology of temperate ephemeral and perennial floodplain ponds lags behind that of other shallow waterbodies. This study examines the aquatic macroinvertebrate diversity of 34 ponds (20 perennial and 14 ephemeral) on two unregulated riverine floodplain meadows in Leicestershire, UK. Perennial ponds supported nearly twice the diversity of ephemeral ponds. Despite frequent inundation of floodwater and connectivity with other floodplain waterbodies, ephemeral ponds supported distinct invertebrate communities when compared to perennial ponds. When the relative importance of physical, chemical, biological and spatial characteristics was examined, physical and chemical characteristics were found to account for more variation in community composition than biological or spatial variables. The results suggest that niche characteristics rather than neutral colonisation processes dominate the structure of invertebrate communities of floodplain ponds. The maintenance of pond networks with varying hydroperiod lengths and environmental characteristics should be encouraged as part of conservation management strategies to provide heterogeneous environmental conditions to support and enhance aquatic biodiversity at a landscape scale

    Teaching Africa and international studies: Forum introduction

    Get PDF
    Africa has often been defined and represented by outsiders. In International Studies, the continent is frequently viewed as peripheral and uninteresting. This is clearly a problem, and an increasingly apparent one as the number of courses on Africa and IS grow, both in Africa and beyond. Many academics who run these courses are keen to challenge the continent’s traditional marginalisation and perceived dependency, but they are limited by the resources available to them, and the fact that many are establishing new courses from scratch. This article outlines some of the key debates around teaching Africa and IS, setting the scene for the articles that follow

    To identify the factors that influence the recognizing and responding to adult patient deterioration in acute hospitals

    Get PDF
    Aims. To identify factors that influence recognition and response to adult patient deterioration in acute hospitals. Design. A Mixed-Studies Systematic Review. Data sources. CINAHL, Medline and Web of Science were searched for relevant literature published between; 2007-2018. Review Methods. Studies were critically appraised, data extracted and thematically analyzed. Results. Thirteen papers met the inclusion criteria. Three main themes were identified: (1) Knowledge and understanding of clinical deterioration; (2) Organizational factors; managing deterioration and staffing levels; and (3) Communication; inter-professional relationships and professional-patient communication. Conclusion. Despite national guidelines, the review findings suggest that the recognition and response to adult patient deterioration in acute hospital settings is sub-optimal. A multitude of factors influencing the recognition and response to adult patient deterioration emerged from the findings. Impact. Patients are receiving sub-optimal care due to failure in recognizing and responding to patient deterioration in an appropriate and timely manner. Nurses lack knowledge and understanding of deterioration. Organizational factors contribute to inadequate care and communication among professionals was highlighted as challenging. The factors that influence the recognizing and responding to patient deterioration in acute hospitals are multi-faceted, however this review highlights immediate recommendations for professionals in the acute care setting

    Reliability and validity of cross-national homicide data: A comparison of UN and WHO data

    Get PDF
    Data reliability and validity are major methodological concerns in cross-national analyses of crime. Despite the large literature on cross-national homicide rates, there is little agreement on which source of data provides the most reliable estimates. In addition, few studies have examined the potential threat to validity posed by unclassified deaths. Through a description of trends over time as well as multivariate analyses, the current study aims to shed some light on these questions by (1) assessing the reliability of cross-national homicide data from the United Nations and the World Health Organization, and (2) investigating the impact of unclassified deaths on the validity of WHO data. Findings indicate that UN and WHO homicide rates (n=56) differ in magnitude but produce similar outcomes. Drawing on well-known correlates of cross-national homicide rates, the UN data provide more robust results and produce statistical models with less error. We find that WHO data are more stable and reliable over time, and better suited for longitudinal analyses. Findings also suggest that analyses drawing on WHO homicide data should not disregard unclassified deaths because their inclusion produces better fitted statistical models and provides a closer estimate of the true number of homicides

    Modelling abrupt glacial North Atlantic freshening: Rates of change and their implications for Heinrich events

    No full text
    The abrupt delivery of large amounts of freshwater to the North Atlantic in the form of water or icebergs has been thought to lead to significant climate change, including abrupt slowing of the Atlantic Ocean meridional overturning circulation. In this paper we examine intermediate complexity coupled modelling evidence to estimate the rates of change, and recovery, in oceanic climate that would be expected for such events occurring during glacial times from likely sources around the North Atlantic and Arctic periphery. We show that rates of climate change are slower for events with a European or Arctic origin. Palaeoceanographic data are presented to consider, through the model results, the origin and likely strength of major ice-rafting, or Heinrich, events during the last glacial period. We suggest that Heinrich events H1-H3 are likely to have had a significant contribution from an Arctic source as well as Hudson Strait, leading to the observed climate change. In the case of H1 and H2, we hypothesise that this secondary input is from a Laurentide Arctic source, but the dominant iceberg release for H3 is hypothesised to derive from the northern Fennoscandian Ice Sheet, rather than Hudson Strait. Earlier Heinrich events are suggested to be predominantly Hudson Strait in origin, with H6 having the lowest climate impact, and hence iceberg flux, but H4 having a climate signal of geographically variable length. We hypothesise that this is linked to a combination of climate-affecting events occurring around the globe at this time, and not just of Laurentide origin. (C) 2010 Elsevier B.V. All rights reserved

    Abdominal aortic calcification quantified by the Morphological Atherosclerotic Calcification Distribution (MACD) index is associated with features of the metabolic syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abdominal aortic calcifications (AAC) predict cardiovascular mortality. A new scoring model for AAC, the Morphological Atherosclerotic Calcification Distribution (MACD) index may contribute with additional information to the commonly used Aortic Calcification Severity (AC24) score, when predicting death from cardiovascular disease (CVD). In this study we investigated associations of MACD and AC24 with traditional metabolic-syndrome associated risk factors at baseline and after 8.3 years follow-up, to identify biological parameters that may account for the differential performance of these indices.</p> <p>Methods</p> <p>Three hundred and eight healthy women aged 48 to 76 years, were followed for 8.3 ± 0.3 years. AAC was quantified using lumbar radiographs. Baseline data included age, weight, blood pressure, blood lipids, and glucose levels. Pearson correlation coefficients were used to test for relationships.</p> <p>Results</p> <p>At baseline and across all patients, MACD correlated with blood glucose (r<sup>2 </sup>= 0.1, P< 0.001) and to a lesser, but significant extent with traditional risk factors (p < 0.01) of CVD. In the longitudinal analysis of correlations between baseline biological parameters and the follow-up calcification assessment using radiographs we found LDL-cholesterol, HDL/LDL, and the ApoB/ApoA ratio significantly associated with the MACD (P< 0.01). In a subset of patients presenting with calcification at both baseline and at follow-up, all cholesterol levels were significantly associated with the MACD (P< 0.01) index. AC24 index was not correlated with blood parameters.</p> <p>Conclusion</p> <p>Patterns of calcification identified by the MACD, but not the AC24 index, appear to contain useful biological information perhaps explaining part of the improved identification of risk of cardiovascular death of the MACD index. Correlations of MACD but not the AC24 with glucose levels at baseline suggest that hyperglycemia may contribute to unique patterns of calcification indicated by the MACD.</p

    Freshwater invertebrate responses to fine sediment stress A multi-continent perspective

    Get PDF
    Excessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles
    corecore