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Abstract
Excessive fine sediment (particles <2 mm) deposition in freshwater systems is a per-
vasive stressor worldwide. However, understanding of ecological response to excess 
fine sediment in river systems at the global scale is limited. Here, we aim to address 
whether there is a consistent response to increasing levels of deposited fine sediment 
by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New 
Zealand and the UK). Results indicate ecological responses are not globally consistent 
and are instead dependent on both the region and the facet of invertebrate diversity 
considered, that is, taxonomic or functional trait structure. Invertebrate communities 
of Australia were most sensitive to deposited fine sediment, with the greatest rate of 
change in communities occurring when fine sediment cover was low (below 25% of 
the reach). Communities in the UK displayed a greater tolerance with most composi-
tional change occurring between 30% and 60% cover. In both New Zealand and Brazil, 
which included the most heavily sedimented sampled streams, the communities were 
more tolerant or demonstrated ambiguous responses, likely due to historic environ-
mental filtering of invertebrate communities. We conclude that ecological responses 
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1  |  INTRODUC TION

Globally, freshwater systems are under significant pressure from 
anthropogenic stressors. Declines of biodiversity in aquatic envi-
ronments are disproportionate, far exceeding those of terrestrial 
and marine systems (Higgins et al., 2021; Reid et al., 2019). In par-
ticular, excessive delivery and deposition of fine sediment (particles 
<2 mm) in river systems represents a major global threat to aquatic 
ecosystem health with inputs of fine sediment now far exceeding 
natural background levels (Dudgeon,  2019; Foster et  al.,  2011). 
Anthropogenic activities such as agricultural intensification, mining 
and deforestation have all increased the supply of fine sediments 
to rivers (Collins et  al., 2009). Moreover, excessive transport and 
delivery of fine sediment is expected to be further exacerbated by 
changes to rainfall and run-off regimes under future climatic change 
(Burt et al., 2016). Tackling the ecological implications of fine sedi-
ment is therefore a global and urgent issue, which continues to pres-
ent ongoing challenges for monitoring and regulatory agencies.

The effects of excessive fine sediment deposition in rivers span mul-
tiple trophic levels (Owens et al., 2005). However, assessment of the 
effects of fine sediment, as with other anthropogenic stressors, is often 
performed using invertebrate communities as a proxy for wider ecosys-
tem health and habitat quality. Fine sediment can affect invertebrate 
communities through a variety of mechanisms. The settling and infil-
tration of fine sediment in gravel beds reduces habitat heterogeneity, 
clogs interstitial pore space and limits intragravel flows and hydraulic 
connectivity (Dubuis & De Cesare, 2023; Wharton et al., 2017; Yarnell 
et al., 2006). This in turn alters the suitability of the substrate for some 
invertebrate taxa, impacts the exchange of oxygen and removal of ex-
creta, increases invertebrate dispersal via drift and can affect respira-
tion and feeding activities, which ultimately shapes the biodiversity and 
structure of invertebrate communities (Brown et  al.,  2019; Descloux 
et al., 2014; Mathers et al., 2017; Piggott et al., 2015).

Traditionally, taxonomic approaches have been used to quan-
tify invertebrate responses to fine sediment pressures (Gieswein 
et  al.,  2019; Turley et  al., 2015). However, quantifying community 
responses using functional traits can provide new insights into the 
mechanisms behind change occurring, rather than simply observing 
that a change has occurred (Culp et  al.,  2011). Consequently, we 
can infer ecosystem functioning (or lack of) from a combination of 
functional diversity metrics (Cadotte et al., 2011; Díaz et al., 2013). 
Individual traits that are sensitive are filtered by the prevailing en-
vironmental conditions (i.e., environmental filtering), which in turn 
shapes the functional assemblage of the invertebrate community 
(Floury et  al.,  2017). At the community level, some loss of func-
tioning associated with fine sedimentation has been reported from 

a limited number of studies (Lange et al., 2014). However, until re-
cently, trait-based approaches were limited to the geographic region 
within which the trait databases were developed. Inconsistencies 
between trait groupings (e.g., feeding group) and individual trait mo-
dalities (e.g., shredder, filterer and scraper), as well as variation in 
taxonomic resolution, have meant multi-country or region analyses 
has been limited (but see Brown et al., 2018; Mathers et al., 2022). 
With a new harmonised trait database (Kunz et al., 2022) available, 
it is possible for the first time to analyse functional responses to fine 
sediment at a multi-continental spatial scale.

Despite the deleterious effects of excessive fine sediment deposi-
tion on river biodiversity, thresholds (such as standards or guidelines) 
are rarely recognised in management policies, unlike for example flow 
requirements (Directive 2000/60/EC of the European Parliament and 
of the Council Establishing a Framework for the Community Action in 
the Field of Water Policy, 2000). Where available, regulatory guide-
lines are not always based on explicit evidence of ecological degrada-
tion (Mondon et al., 2021) and are not necessarily thresholds at which 
populations or communities change abruptly or shift to alternate sta-
bles states (sensu the definition of ecological threshold by Groffman 
et  al.,  2006). Ecological threshold analysis, which investigates such 
abrupt changes, could therefore represent a valuable tool to aid in the 
establishment of management thresholds for fine sediment (Groffman 
et al., 2006). The concept of an ecological threshold is founded on spe-
cies tolerating the stressor up to a threshold point in which the effects 
become nonlinear, or disproportionate, relative to further increases in 
the stressor (D'Amario et al., 2019; May, 1977). Threshold analysis has 
been successfully applied to a variety of different environmental driv-
ers, or stressors (e.g., excess nutrients, urbanisation and river flow) and 
species groups (e.g., birds, fish, diatoms, algae, macrophytes and inver-
tebrates; Chen & Olden, 2020; Sonderegger et al., 2009; Wagenhoff 
et al., 2017) but, as yet, fine sediment pressures have not been exam-
ined extensively. Defining ecological thresholds has recently drawn sci-
entific debate, with concerns about the fundamental ability to identify 
thresholds from empirical data, and whether targets based on thresh-
olds are detrimental to management practices (Hillebrand et al., 2020, 
2021). However, the identification of safe operating spaces, or accept-
able limits of change, represents a valuable tool for the management 
of environmental stressors (Lade et al., 2021), and provides a vector to 
interpret complex ecological responses across pressure gradients.

The limited existing research, which has sought to quantify in-
vertebrate ecological thresholds to deposited fine sediment, pres-
ents varying and conflicting results (Burdon et  al.,  2013; Kaller & 
Hartman, 2004; Paul & McDonald, 2005; Schäffer et al., 2020). This 
can be attributed to inconsistencies in the ecological response vari-
able (i.e., taxonomic level or community facet), measurement of fine 

to fine sediment are not generalisable globally and are dependent on landscape filters 
with regional context and historic land management playing important roles.
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sediment and statistical methods applied. These studies are typically 
based on small spatial scales meaning scaling up is not possible. As 
such, there remains a crucial need for studies to establish the thresh-
olds at which ecological degradation occurs across the deposited sedi-
ment gradient in order to fully characterise the ecological implications. 
This study represents the first multicontinental perspective in iden-
tifying country-specific deposited fine sediment thresholds. Through 
a combination of taxonomic and functional analyses, we sought to 
assess riverine invertebrate responses to fine sediment on a global 
scale. Specifically, we tested the following: (1) whether taxonomic and 
functional facets of invertebrate communities vary in response to de-
posited fine sediment across geographic regions and (2) if there are 
globally consistent associations of invertebrate community metrics 
(biological indicators) with deposited fine sediment.

2  |  METHODS

2.1  |  Data sets characterised

Data were obtained from three continents constituting the four 
countries of Australia, Brazil, the UK (collective) and New Zealand 
(Figure  S1 in Data  S1). Data comprised paired biological (inverte-
brates) and environmental (visual fine sediment cover %) data col-
lected during the same sampling occasion (Table 1) consisting of a 
total of 6491 samples. Substrate composition was determined at the 
same spatial scale as biological sampling via visual estimates of per-
centage cover of the bed surface at sample reaches across a range 
of size classes (e.g., boulder, cobble and gravel), with the percentage 
of fine sediment calculated by aggregating all substrate categories 
<2 mm in diameter (clay, silt and sand). Visual estimates have been 
shown to be a reliable proxy for fully quantitative methods of assess-
ing fine sediment in aquatic systems, with low inter-operator vari-
ability (Conroy et al., 2016a; Mckenzie et al., 2022b). Fine sediment 
data were initially assessed to ensure a suitable gradient coverage 
prior to analysis (other data sets were excluded based on this as-
sessment). Invertebrates were collected using standard quantitative 
methodologies (kick or Surber sampling) and identified to either fam-
ily or mixed-taxon level. Data were converted to relative abundance 
to ensure comparability (e.g., Chen & Olden, 2020) and resolved at 

family level to account for the mixed levels of identification (Everall 
et al., 2017; Stubbington et al., 2022). Sites were filtered (either prior 
to acquisition or during data collection) to ensure a reduction in co-
occurring stressors, which may confound or interact with the effects 
of fine sediment. Detailed descriptions of sampling methods and 
data filtering for each source can be found in Data S1.

Functional trait databases providing harmonised trait data for 
Europe, North America (used for Brazil), New Zealand and Australia 
at the family level were compiled (Kunz et al., 2022). A total of 22 
individual trait modes across six trait categories were used in the 
analyses (Table S3 in Data S1). The number of taxa assigned traits 
varied by country: Australia (78), Brazil (44), the UK (79) and New 
Zealand (59). The trait database was acquired as proportional traits 
(rather than fuzzy coded traits).

2.2  |  Statistical analysis

Gradient Forest (GF) analysis (gradientForest package) (Ellis 
et  al.,  2012) was applied to compare compositional change (or 
turnover) across the deposited sediment gradient to define com-
munity threshold points. GF is an extension of random forest 
(Breiman, 2001) and applies a regression tree approach to quantify 
thresholds using nonlinear responses across an environmental gra-
dient. First, separate random forests (ntree = 1000) are constructed 
for each species (or trait modality for functional community analy-
sis). Next, GF aggregates the split value of each individual tree and 
their fit improvement across all species with positive fits (defined 
as R2 > 0). When quantifying the overall compositional change 
across the gradient, each split in the GF contributes relative to its 
fit improvement, and each species contributes relative to its vari-
ance (as R2) explained by the environmental predictor(s) (Chen & 
Olden, 2020; Compton et  al., 2013; Ellis et  al.,  2012). One of the 
benefits of GF is that it is unaffected by unevenly distributed data 
across the environmental gradient, which is often the case with 
field survey data, as it standardises split density by the density of 
observed values across the gradient (Ellis et  al.,  2012; Wagenhoff 
et al., 2017). With the standardisation expressed as a ratio, points 
where the value is >1 represent areas where compositional change is 
highest compared with the turnover occurring elsewhere across the 

TA B L E  1 Summary of data sources in study.

Country and source publications/databases
Duration of 
record

Number of 
samplesa

Number 
of taxa

Australia (New South Wales) (Compiled by the New South Wales Department of Planning 
and Environment, 2018)

1994–2011 3099 174

Brazil (Cerrado Biome) (Agra et al., 2021; Callisto et al., 2019; Castro et al., 2017, 2018, 
2020; Firmiano, Canedo-Argüelles, et al., 2021; Firmiano, Castro, et al., 2021; Macedo 
et al., 2018; Silva et al., 2018, 2021)

2009–2017 232 102

UK (Environment Agency, 2021; Jones et al., 2017; Murphy et al., 2015, 2017) 1990–2019 2818 173

New Zealand (Hunter, 2020; Lange et al., 2014; Magbanua et al., 2010; Matthaei 
et al., 2006; Wagenhoff et al., 2011)

2003–2011 342 108

aAfter data filtering to reduce confounding factors.
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gradient, thus indicating community threshold points. All threshold 
points were identified using the R package pracma (Borchers, 2019; 
Chen & Olden, 2020).

Threshold Indicator Taxa ANalyses (TITAN) (Baker & King, 2013) 
were carried out using the TITAN2 package (Baker et  al.,  2015). 
TITAN is a nonparametric method that uses a resampling technique 
to detect abrupt change points of abundance and occurrence across 
an environmental gradient (Baker & King, 2013; King & Baker, 2010). 
TITAN determines these change points for individual components 
of the community which are either sensitive (respond negatively) or 
tolerant (respond positively) to an environmental gradient, providing 
further information on the community thresholds than identified by 
GF alone. A taxon or trait is identified as either responding posi-
tively (z+) or negatively (z−) to the deposited sediment gradient if; 
(a) the change in frequency and abundance is the same for ≥95% of 
all bootstrap samples (i.e., pure) and, (b) ≥95% of all bootstrap sam-
ples are significantly different from a random distribution (p < .05) 
(i.e., reliable). The sum of all IndVal z scores (sumz) can be used as 
an indicator of taxonomic or functional community level threshold 
by identifying peaks along the gradient associated with the maxi-
mum decline or increase in frequency and/or abundance of nega-
tive and positive responders, respectively (King et al., 2016; Monk 
et al., 2018). Function parameters were set as 250 random permu-
tations (numPerm) and 500 bootstrap replicates (nBoot) (Khamis 
et al., 2014; Lencioni, 2018; Porter-Goff et al., 2013).

Ten taxonomic and functional metrics were calculated to deter-
mine the consistency of responses in commonly employed biodi-
versity metrics to fine sediment. Taxonomic indices calculated were 
taxa richness, Ephemeroptera, Plecoptera and Trichoptera (EPT) 
richness, EPT index (EPT richness as a proportion of taxa richness), 
Simpson's diversity index, and Pielou's evenness. Five functional 
diversity indices were calculated using the FD package (Laliberté 
et al., 2014) comprising functional richness (FRic), functional disper-
sion (FDis), functional evenness (FEve), functional divergence (FDiv) 
and Rao's quadratic entropy (RaoQ). Spearman's rank correlation 
(due to non-normal data distribution) assessed the performance of 
the indices against visual fine sediment (%). Pairwise correlations 
were corrected for multiple comparisons using the Holm–Bonferroni 
correction (Holm, 1979). All analyses were conducted in the R envi-
ronment (R Development Core Team, 2022).

3  |  RESULTS

3.1  |  Community responses to deposited fine 
sediment

Thresholds in taxonomic responses were identified by GF to occur 
at low fine sediment coverage for Australia and Brazil, occurring at 
<12% cover (see peaks in the ratio densities [purple line] in Figure 1; 
Table S1 in Data S2). The UK taxonomic responses exhibited mul-
tiple thresholds across a broad range of fine sediment coverage 
(16%–99%) with the peak threshold occurring at 44% cover. New 

Zealand exhibited the lowest threshold for all countries (3% cover) 
but had a peak taxonomic threshold at 89% coverage. Thresholds 
in functional community responses for Australia and New Zealand 
closely mirrored their respective taxonomic peak threshold points at 
12% and 89%, respectively (Figure 1; Table S1 in Data S2). In Brazil, a 
high functional threshold was observed at 94% in contrast to the low 
taxonomic threshold at 9%. In the UK, multiple functional thresholds 
were observed.

When TITAN analyses were considered, taxonomic and func-
tional measures showed contrasting change points along the de-
posited fine sediment gradient (Figures  2 and 3). Sensitive (i.e., 
negatively responding, z-) functional traits were associated with 
higher fine sediment thresholds than sensitive taxa for all countries 
(Figure 2). Sensitive taxa generally had a lower threshold point than 
tolerant (i.e., positively responding, z+) taxa. By contrast, tolerant 
traits had a lower threshold point than sensitive traits (except in 
Australia). However, observing peaks in the sumz scores across the 
deposited sediment gradient provides more information than ob-
serving a single change point location alone (Figure 3). Peaks in sumz 
density at <10% deposited sediment were present for sensitive taxa 
in Australia, which was the single lowest taxonomic changepoint 
identified across all countries. Sensitive taxa in Brazil displayed a 
single peak, which occurred between 30% and 60% fine sediment 
coverage. Both sensitive and tolerant traits in Brazil peaked at the 
upper end of the gradient, with the rate of change increasing steadily 
along the gradient. In contrast, both sensitive and tolerant taxa in 
the UK displayed peaks at the lower end of the deposited sediment 
gradient (~20%–25%). Tolerant traits in the UK demonstrated peaks 
towards the lower end of the gradient (<20%), whilst in contrast, 
sensitive traits peaked at the upper end (75%). There were no dis-
tinctive peaks for New Zealand for either taxonomic or functional 
responses. When assessing overall community change, the narrower 
quartile ranges (Figure  2), and near-vertical cumulative frequency 
distribution plots (Figure 3) indicated that there was a higher degree 
of confidence in the changepoint locations for both taxonomic and 
functional measures in Australia and the UK relative to Brazil and 
New Zealand.

3.2  |  Ecological indicators of deposited 
fine sediment

Ephemeroptera, Plecoptera and Trichoptera indices (EPT richness 
and EPT index) were found to be significantly negatively correlated 
with deposited fine sediment coverage in all four countries (Figure 4; 
full statistical outputs available in Table S2 in Data S2). The correla-
tions were strongest for Australia, with EPT richness and fine sedi-
ment coverage being the strongest pairwise correlation across all 
combinations. Overall, at the family-level taxonomic resolution, the 
UK had the highest EPT richness compared with all other regions, 
whilst in New Zealand, both the lowest number of taxa (across all 
orders) and EPT richness (Figure S1 in Data S2) were recorded. In 
Brazil, the lowest EPT index scores were found despite taxonomic 
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F I G U R E  1 Taxonomic (taxa) and functional (traits) change in invertebrate communities across a deposited fine sediment gradient (% visual 
cover) as identified by Gradient Forest analysis. Split density importance (grey bars) shown on secondary y axis (right hand side). Points along 
the gradient where the ratio of densities >1 indicate areas where compositional change is highest compared with the turnover occurring 
elsewhere across the gradient, thus indicating community threshold points.
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richness being the highest, indicating the sites are taxonomically rich 
but with a low proportion of EPT taxa. Taxonomic richness was sig-
nificantly correlated with deposited fine sediment coverage in three 
countries, in a negative fashion in Australia and Brazil, but positively 
in the UK. Simpson's diversity index was overall poorly correlated 
with deposited fine sediment, with a significant negative correlation 
for only one country (Brazil). Multiple functional indices were signifi-
cantly correlated with fine sediment in Australia and New Zealand, 
but only FRic demonstrated a significant correlation for the UK and 
no significant correlations were observed in Brazil (Figure 4).

Overall, our findings demonstrate that based on indicator taxa as 
identified by TITAN (i.e., either z− or z+), taxonomic change in Brazil 
appeared to be driven by negatively responding taxa, whereas the 
UK was driven by positively responding taxa (Table 1). New Zealand 
and Australia demonstrated a more even spilt between negatively 
and positively responding taxa. Functional change identified by 
TITAN indicator traits found a greater proportion of positively re-
sponding traits in the UK, with Australia and New Zealand composi-
tional change being driven by negatively responding traits (Table 2). 
Brazil demonstrated the same proportion (33%) of negatively and 
positively responding traits (Table  2). Considering GF analysis, a 
low proportion of taxa or traits were identified in Brazil indicating 
that the compositional change of only a few taxa (2%)/traits (5%) 
could be predicted by the deposited fine sediment gradient, whilst 
Australia demonstrated a high proportion of traits (82%) associ-
ated with compositional change over the fine sediment gradient 
(Table 2;Tables S3–S11 in Data S2 for full results).

4  |  DISCUSSION

Excess fine sediment deposition is a pervasive stressor in aquatic en-
vironments causing complex, often nonlinear, impacts on freshwater 
communities. Most existing research quantifying ecological thresh-
old responses to deposited fine sediment is based on small spatial 
scales (e.g., Larsen et al., 2009). We have, for the first time, quanti-
fied at what point along the gradient of % deposited fine sediment 
cover, disproportionately large impacts occur for invertebrate com-
munities across multiple continents. Compared with other gradients 
(e.g., urbanisation and glacier loss) in which consistent responses 
are evident across multiple geographic regions (Brown et al., 2018; 
Chen & Olden, 2020), the results of our study suggest that biotic 
responses to deposited fine sediment are dependent on both the 
region and the facet of the invertebrate community (e.g., taxonomic 
or functional) considered.

The most consistent responses to fine sediment were evident 
for Australia and the UK. For Australia, fine sediment appeared to 
cause the most severe taxonomic changes when the sediment cov-
erage was low (i.e., <25%). In contrast to the UK, widespread con-
version of forested land to agriculture has only occurred relatively 
recently in Australia, since European colonisation in the late 18th 
century, with the greatest rates of forest loss and degradation occur-
ring since the 1970s (Allen, 1999; Bradshaw, 2012). This more recent 
land use change may have resulted in a greater number of extant 
sensitive species in Australia relative to the UK, thus driving a strong 
community response at low deposited sediment % cover. Despite 
a similar timescale of land conversion occurring in New Zealand as 
in Australia, agricultural land cover in the sampled catchments was 
greater than in Australia (Table  S2 in Data  S1), likely resulting in 
invertebrate communities composed of taxa more tolerant to fine 
sediment from continuous exposure (similar to the UK and Brazil). In 
New Zealand, a large proportion of sampled sites were at the high 
end of the deposited fine sediment coverage range (Figure  S1 in 
Data S1), and overall lower numbers of pollution-sensitive EPT taxa 
were found in this region compared to other countries (Figure S2 in 
Data S2). As such, it may explain why, for New Zealand, we found the 
greatest rate of community change for both the taxonomic and func-
tional responses to be at the higher end of the deposited sediment 
gradient. This suggests that for the stream types sampled, environ-
mental filtering has already taken place. In other words, the taxa/
trait communities have been filtered by the prevailing environmental 
conditions which we speculate could be associated with pervasive 
and longstanding fine sediment inputs. However, the wide confi-
dence intervals for the change points identified by TITAN in New 
Zealand suggest uncertainty of a specific community threshold point 
and an ambiguous ecological response to fine sediment which may 
reflect context specificity of fine sediment stress.

Taxonomic and functional responses in Brazil were either poorly 
related or unaffected by fine sediment. Although the threshold 
points identified by GF were at low deposited fine sediment cov-
erage, only two taxa demonstrated positive R2 values in the model. 
Therefore, these threshold points represent the turnover of two of 

F I G U R E  2 Observed sumz− (red) and sumz+ (blue) maxima (i.e., 
change points) identified by Threshold Indicator Taxa ANalysis 
(TITAN) for taxonomic (taxa) and functional (traits) measures of 
communities. Peak change points indicated as circles, with 5th and 
95th percentile distributions as horizontal lines. Change points are 
filtered to include only pure and reliable taxa/traits.
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F I G U R E  3 Taxonomic (taxa) and functional (traits) community change identified by Threshold Indicator Taxa ANalysis (TITAN) shown 
as density plots of sumz for positively responding taxa (blue circles) and negatively responding taxa (red circles) across fine sediment 
(%) gradient for Australia, Brazil, New Zealand and the UK. Peaks in values across the sumz gradient indicate points of large amounts of 
community change. The gradient of the cumulative frequency distribution of sumz− and sumz+ indicates the certainty of change point 
locations with vertical lines indicating higher confidence relative to shallow gradient lines. Sumz are filtered to include only pure and reliable 
taxa.
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102 taxa in total (Table 1; Tables S3 and S4 in Data S2). Whilst this 
finding could be attributed to the lower sample size (with Brazil rep-
resenting the smallest data set), this is highly unlikely because New 
Zealand and the UK yielded a similar number of taxa indicative of 
deposited fine sediment (across all three analyses) despite the size 
of the UK data set being an order of magnitude greater than for 
New Zealand. It is more plausible that the rivers studied in Brazil 
generally contained naturally high levels of deposited fine sediment 
(the highest in our study, Figure S1 in Data S2) due to most rivers in 
the Cerrado Biome flowing over highly erodible sedimentary rocks 
(Macedo et al., 2014). As such, it is highly likely the community was 
pre-adapted to higher fine sediment loads and therefore did not ex-
hibit abrupt changes in taxonomic composition across the gradient. 
Indeed, Brazil supported the lowest EPT index value of all coun-
tries, confirming the presence of a community dominated by taxa 

more tolerant of fine sediment in turn driving the higher identified 
threshold.

Excessive fine sediment deposition is of particular concern in 
lowland gravel-bed rivers where relatively stable seasonal flow re-
gimes (often exacerbated by groundwater abstraction), coupled 
with an increase in arable farming, has resulted in these rivers being 
most at risk of fine sediment accumulation (Naden et  al.,  2016). 
Meanwhile, coarse-bed rivers dominated by run-off in upland sites 
maintain naturally lower levels of fine sediment. In our study, inver-
tebrate communities in the UK showed some resilience to deposited 
fine sediment and most significant taxonomic changes occurred in 
the range of 30%–50% cover. However, this result should be in-
terpreted with some caution, as these threshold values could ex-
ceed the tolerances of some communities and the implications of 
fine sediment deposition are likely to be context specific (Mathers 
et al., 2022). Sampling sites in all countries were biased towards low-
land areas (relative to the number of upland sites sampled; Table S2 
in Data S1), and weaker ecological responses to deposited fine sed-
iment in lowland rivers have been recorded at both the community 
(Mathers et  al., 2022; Matthaei et  al., 2006) and the species level 
(Conroy et al., 2018). This suggests both environmental filtering of 
taxa in lowland areas and potentially some plasticity in response to 
deposited fine sediment. Thus, lowland species may be naturally less 
sensitive due to their continued exposure. Therefore, the thresh-
olds identified in our study may potentially be too high for ecolog-
ically important taxa found in upland rivers globally. It is therefore 
likely that a context-specific approach to fine sediment thresholds 
is needed and further assessment encompassing a range of river 
typologies is required (e.g. as in New Zealand's policy; Ministry for 
the Environment, 2020). To address the threat of excessive fine sed-
iment deposition, field and experimental studies are needed that 
span a range of stream typologies (encompassing different geolo-
gies and flow regimes) and depositional/erosional sedimentation 
processes (saltation, suspension, bedload and clogging), to allow 
the influence of abiotic and biotic factors to be evaluated. This ap-
proach may warrant cross-country/eco-region collaboration as has 
been successfully undertaken for other ecosystem processes (e.g., 
Chauvet et al., 2016).

In most cases, the functional trait thresholds for deposited 
fine sediment were higher than the taxonomic thresholds. This re-
sult likely highlights the extent of functional redundancy, whereby 
other persistent taxa fulfil similar functional roles to taxa that are 

F I G U R E  4 Correlation matrix for taxonomic and functional 
indices of community composition with deposited fine sediment (% 
visual cover) for each country. Colour ramp indicates Spearman's 
rank correlation coefficient. Only significant pairwise correlations 
(p < .05) are presented (Holm–Bonferroni corrected).

Analysis Community Australia Brazil
New 
Zealand UK

TITAN Taxa z− 30% 30% 19% 17%

z+ 39% 5% 30% 52%

Traits z− 62% 33% 40% 29%

z+ 38% 33% 20% 52%

Gradient Forest Taxa 32% 2% 21% 18%

Traits 82% 5% 45% 45%

TA B L E  2 Percentage of individual taxa 
or trait modalities identified as indicators 
of deposited fine sediment across analysis 
methods: TITAN (pure and reliable taxa 
only where ≥95% of 999 bootstrap runs 
are significantly different from a random 
distribution where p < .05) and Gradient 
Forest (R2 > 0).
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lost at low values of the gradient (Oliver et al., 2015). When con-
sidering thresholds by response group identity (i.e., z− and z+), taxa 
responding positively generally demonstrated a higher threshold 
than taxa responding negatively, whilst the opposite was true for 
traits. A similar converse pattern in taxa and trait responses has 
been demonstrated for flow thresholds (Monk et al., 2018), which 
may represent an artefact of the fuzzy coding of traits typically em-
ployed, with positively responding taxa increasing in occurrence and 
abundance before negatively responding taxa are completely lost. 
As selection pressures do not act on single traits, but on organisms 
possessing many interacting traits (Verberk et  al., 2013), this pat-
tern may also represent associated traits increasing or decreasing 
in their frequency of occurrence without being directly affected 
by the stressor. Moreover, the wide confidence intervals recorded 
here in all geographical regions suggest that functional responses to 
fine sediment are equivocal, with trait categories potentially failing 
to capture the mechanisms behind sensitivity (Wilkes et al., 2017). 
This is further evidenced with the response of functional community 
metrics across all geographic regions being inconsistent, implying 
that we should not use these metrics as indicators of fine sediment 
pressure with confidence. Two individual functional traits, feeding 
mode of herbivore and respiration via gills, consistently responded 
negatively to fine sediment in all four countries. Both these traits 
(and many others) have been cited as demonstrating variable results 
in a number of studies (see Murphy et al., 2017; Wilkes et al., 2017 
for summaries). However, our study is the first to incorporate a large 
spatial scale and a wide range of fine sediment cover in each coun-
try; thus, our findings potentially suggest these two traits could 
represent mechanistic response traits. When all taxonomic metrics 
were considered, indices based on EPT groups were consistently the 
strongest indicators of fine sediment pressure across all countries, 
supporting existing evidence of the efficacy of this metric in the ab-
sence of sediment-specific indices (Conroy et al., 2016b; McKenzie 
et al., 2022a).

Our findings suggest that there are varying levels of corre-
spondence between the taxonomic and functional biodiversity 
facets along the deposited fine sediment gradient. Given the 
possible explanation of landscape filtering effects for our find-
ings, we conclude that understanding regional context and his-
torical land management practices are important in determining 
the response of communities to fine sediment gradients (Chen & 
Olden, 2020; Firmiano, Canedo-Argüelles, et al., 2021; Firmiano, 
Castro, et  al.,  2021; Mathers et  al., 2022). The application of 
meaningful deposited fine sediment targets continues to draw sci-
entific debate and recommendations for the development of any 
future guidelines should focus on the implementation of a holis-
tic approach such as the inclusion of catchment drivers, sediment 
regimes and channel morphology, coupled with ecologically rel-
evant responses (Collins et  al., 2011; Mondon et  al., 2021). The 
significance of fine sediment as a global stressor has repercus-
sions beyond in-stream ecological degradation, with management 
considerations interconnected with future development and food 
security policies. When coupled with the implications of climate 

change, excess fine sediment stress remains a topic that requires 
significant attention from academics and environment managers. 
Our findings provide an important step towards a global perspec-
tive of this important issue.
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