177 research outputs found

    Childhood maltreatment and amygdala connectivity in methamphetamine dependence: a pilot study.

    Get PDF
    IntroductionChildhood maltreatment, a well-known risk factor for the development of substance abuse disorders, is associated with functional and structural abnormalities in the adult brain, particularly in the limbic system. However, almost no research has examined the relationship between childhood maltreatment and brain function in individuals with drug abuse disorders.MethodsWe conducted a pilot study of the relationship between childhood maltreatment (evaluated with the Childhood Trauma Questionnaire; Bernstein and Fink 1998) and resting-state functional connectivity of the amygdala (bilateral region of interest) with functional magnetic resonance imaging in 15 abstinent, methamphetamine-dependent research participants. Within regions that showed connectivity with the amygdala as a function of maltreatment, we also evaluated whether amygdala connectivity was associated positively with negative affect and negatively with healthy emotional processing.ResultsThe results indicated that childhood maltreatment was positively associated with resting-state connectivity between the amygdala and right hippocampus, right parahippocampal gyrus, right inferior temporal gyrus, right orbitofrontal cortex, cerebellum, and brainstem. Furthermore, connectivity between the amygdala and hippocampus was positively related to measures of depression, trait anxiety, and emotion dysregulation, and negatively related to self-compassion and dispositional mindfulness.ConclusionsThese findings suggest that childhood maltreatment may contribute to increased limbic connectivity and maladaptive emotional processing in methamphetamine-dependent adults, and that healthy emotion regulation strategies may serve as a therapeutic target to ameliorate the associated behavioral phenotype. Childhood maltreatment warrants further investigation as a potentially important etiological factor in the neurobiology and treatment of substance use disorders

    Neural Basis of Smoking-Related Difficulties in Emotion Regulation

    Get PDF
    BackgroundNegative emotional states contribute to cigarette smoking, and difficulties in regulating these states can hinder smoking cessation. Understanding the neural bases of these difficulties in smokers may facilitate development of novel therapies for Tobacco Use Disorder.MethodsThirty-seven participants (18 smokers, 19 nonsmokers; 16-21 years old) completed the Difficulties in Emotion Regulation Scale (DERS), which is comprised of 6 subscales (lack of emotional clarity, lack of emotional awareness, limited access to emotion regulation strategies, nonacceptance of emotional responses, difficulties engaging in goal-directed behaviors, and impulse control difficulties) that combine to provide a total score. Participants also underwent functional magnetic resonance imaging to determine resting-state functional connectivity of the amygdala. Separate ANOVAs were used to determine group differences in self-reports on the DERS. Voxel-wise linear mixed models were performed to determine whether group influenced relationships between whole-brain functional connectivity of the amygdala and scores on the DERS.ResultsCompared with nonsmokers, smokers reported greater difficulties in emotion regulation, denoted by higher total scores on the DERS. Group differences were observed on a subscale of lack of emotional clarity, but no other subscale differences on the DERS were observed. Nonsmokers exhibited a greater negative correlation than smokers between lack of emotional clarity scores and connectivity of the amygdala with the left inferior frontal gyrus. Finally, this amygdala-to-left inferior frontal gyrus connectivity was weaker in smokers than in nonsmokers.ConclusionsThese findings suggest that difficulties in emotion regulation in smokers are at least partially due to lack of emotional clarity. Given the role of the inferior frontal gyrus in understanding emotional states, strengthening connectivity between the amygdala and the inferior frontal gyrus may improve emotional clarity to help smokers regulate their negative emotions, thereby improving their ability to quit smoking

    Is all risk bad? Young adult cigarette smokers fail to take adaptive risk in a laboratory decision-making test

    Get PDF
    RationaleCigarette smoking has been linked to real-world risky behavior, but this association has been based largely on retrospective self-reports. Limitations of self-report data can be avoided by using laboratory, performance-based measures, such as the Balloon Analogue Risk Task (BART; Lejuez et al., J Exp Psychol Appl 8:75-84, 2002). Initial studies have suggested that smokers display greater risk-taking on this task than nonsmokers, but these studies did not account for drug abuse and psychiatric comorbidities, which are commonplace among smokers.ObjectivesWe sought to examine the performance of smokers and nonsmokers on the BART after excluding drug abuse and psychiatric comorbidities.MethodsWe conducted a study of late adolescent/young adult (age 18 to 21) smokers (n = 26) and nonsmokers (n = 38) performing the BART and excluded individuals with positive drug or alcohol toxicology screens, substance abuse or dependence diagnoses, and/or current psychiatric conditions.ResultsContrary to previous findings, smokers did not display greater risk-taking on the BART than nonsmokers. In fact, when performance was examined trial-by-trial, the nonsmokers displayed progressively greater pumping relative to smokers over time (p < .001), earning them a nonsignificantly greater amount of money than the smokers. Controlling for smoking status, additional analyses revealed that pumping on the BART was positively associated with years of education, nonverbal IQ, and employment.ConclusionsThe results suggest that in young adults, smoking may be associated with a failure to take risks in situations where risk-taking is adaptive

    Low Dopamine D2/D3 Receptor Availability is Associated with Steep Discounting of Delayed Rewards in Methamphetamine Dependence.

    Get PDF
    BackgroundIndividuals with substance use disorders typically exhibit a predilection toward instant gratification with apparent disregard for the future consequences of their actions. Indirect evidence suggests that low dopamine D2-type receptor availability in the striatum contributes to the propensity of these individuals to sacrifice long-term goals for short-term gain; however, this possibility has not been tested directly. We investigated whether striatal D2/D3 receptor availability is negatively correlated with the preference for smaller, more immediate rewards over larger, delayed alternatives among research participants who met DSM-IV criteria for methamphetamine (MA) dependence.MethodsFifty-four adults (n = 27 each: MA-dependent, non-user controls) completed the Kirby Monetary Choice Questionnaire, and underwent positron emission tomography scanning with [(18)F]fallypride.ResultsMA users displayed steeper temporal discounting (p = 0.030) and lower striatal D2/D3 receptor availability (p < 0.0005) than controls. Discount rate was negatively correlated with striatal D2/D3 receptor availability, with the relationship reaching statistical significance in the combined sample (r = -0.291, p = 0.016) and among MA users alone (r = -0.342, p = 0.041), but not among controls alone (r = -0.179, p = 0.185); the slopes did not differ significantly between MA users and controls (p = 0.5).ConclusionsThese results provide the first direct evidence of a link between deficient D2/D3 receptor availability and steep temporal discounting. This finding fits with reports that low striatal D2/D3 receptor availability is associated with a higher risk of relapse among stimulant users, and may help to explain why some individuals choose to continue using drugs despite knowledge of their eventual negative consequences. Future research directions and therapeutic implications are discussed

    O/IR Polarimetry for the 2010 Decade (GAN): Science at the Edge, Sharp Tools for All

    Full text link
    Science opportunities and recommendations concerning optical/infrared polarimetry for the upcoming decade in the field of Galactic science. Community-based White Paper to Astro2010 in response to the call for such papers.Comment: White Paper to the Galactic Neighborhood (GAN) Science Frontiers Panel of the Astro2010 Decadal Surve

    Nature-Based Interventions for Improving Health and Wellbeing : The Purpose, the People and the Outcomes

    Get PDF
    Engagement with nature is an important part of many people's lives, and the health and wellbeing benefits of nature-based activities are becoming increasingly recognised across disciplines from city planning to medicine. Despite this, urbanisation, challenges of modern life and environmental degradation are leading to a reduction in both the quantity and the quality of nature experiences. Nature-based health interventions (NBIs) can facilitate behavioural change through a somewhat structured promotion of nature-based experiences and, in doing so, promote improved physical, mental and social health and wellbeing. We conducted a Delphi expert elicitation process with 19 experts from seven countries (all named authors on this paper) to identify the different forms that such interventions take, the potential health outcomes and the target beneficiaries. In total, 27 NBIs were identified, aiming to prevent illness, promote wellbeing and treat specific physical, mental or social health and wellbeing conditions. These interventions were broadly categorized into those that change the environment in which people live, work, learn, recreate or heal (for example, the provision of gardens in hospitals or parks in cities) and those that change behaviour (for example, engaging people through organized programmes or other activities). We also noted the range of factors (such as socioeconomic variation) that will inevitably influence the extent to which these interventions succeed. We conclude with a call for research to identify the drivers influencing the effectiveness of NBIs in enhancing health and wellbeing.Peer reviewe

    Understanding Polarized Foreground from Dust: Towards Reliable Measurements of CMB Polarization

    Full text link
    Science opportunities and recommendations concerning optical/infrared polarimetry for the upcoming decade in the field of cosmology. Community-based White Paper to Astro2010 in response to the call for such papers.Comment: White Paper to the Cosmology and Fundamental Physics (GCT) Science Frontiers Panel of the Astro2010 Decadal Surve

    O/IR Polarimetry for the 2010 Decade (PSF): Science at the Edge, Sharp Tools for All

    Full text link
    Science opportunities and recommendations concerning optical/infrared polarimetry for the upcoming decade in the fields of planetary systems and star formation. Community-based White Paper to Astro2010 in response to the call for such papers.Comment: White Paper to the Planetary Systems and Star Formation (PSF) Science Frontiers Panel of the Astro2010 Decadal Surve

    In-Datacenter Performance Analysis of a Tensor Processing Unit

    Full text link
    Many architects believe that major improvements in cost-energy-performance must now come from domain-specific hardware. This paper evaluates a custom ASIC---called a Tensor Processing Unit (TPU)---deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPU's deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs (caches, out-of-order execution, multithreading, multiprocessing, prefetching, ...) that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our datacenters' NN inference demand. Despite low utilization for some applications, the TPU is on average about 15X - 30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X - 80X higher. Moreover, using the GPU's GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU.Comment: 17 pages, 11 figures, 8 tables. To appear at the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 24-28, 201
    • …
    corecore