392 research outputs found

    Circulating endothelial cell-derived extracellular vesicles mediate the acute phase response and sickness behaviour associated with CNS inflammation.

    Get PDF
    Brain injury elicits a systemic acute-phase response (APR), which is responsible for co-ordinating the peripheral immunological response to injury. To date, the mechanisms responsible for signalling the presence of injury or disease to selectively activate responses in distant organs were unclear. Circulating endogenous extracellular vesicles (EVs) are increased after brain injury and have the potential to carry targeted injury signals around the body. Here, we examined the potential of EVs, isolated from rats after focal inflammatory brain lesions using IL-1β, to activate a systemic APR in recipient naïve rats, as well as the behavioural consequences of EV transfer. Focal brain lesions increased EV release, and, following isolation and transfer, the EVs were sequestered by the liver where they initiated an APR. Transfer of blood-borne EVs from brain-injured animals was also enough to suppress exploratory behaviours in recipient naïve animals. EVs derived from brain endothelial cell cultures treated with IL-1β also activated an APR and altered behaviour in recipient animals. These experiments reveal that inflammation-induced circulating EVs derived from endothelial cells are able to initiate the APR to brain injury and are sufficient to generate the associated sickness behaviours, and are the first demonstration that EVs are capable of modifying behavioural responses

    Mapping SERS in CB:Au Plasmonic Nanoaggregates

    Get PDF
    In order to optimize surface-enhanced Raman scattering (SERS) of noble metal nanostructures for enabling chemical identification of analyte molecules, careful design of nanoparticle structures must be considered. We spatially map the local SERS enhancements across individual micro-aggregates comprised of monodisperse nanoparticles separated by rigid monodisperse 0.9 nm gaps and show the influence of depositing these onto different underlying substrates. Experiments and simulations show that the gaps between neighbouring nanoparticles dominate the SERS enhancement far more than the gaps between nanoparticles and substrate

    Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Get PDF
    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit

    Glucagon-like peptide-1 (GLP-1) and the regulation of human invariant natural killer T cells: lessons from obesity, diabetes and psoriasis

    Get PDF
    Aims/hypothesis The innate immune cells, invariant natural killer T cells (iNKT cells), are implicated in the pathogenesis of psoriasis, an inflammatory condition associated with obesity and other metabolic diseases, such as diabetes and dyslipidaemia. We observed an improvement in psoriasis severity in a patient within days of starting treatment with an incretin-mimetic, glucagon-like peptide-1 (GLP-1) receptor agonist. This was independent of change in glycaemic control. We proposed that this unexpected clinical outcome resulted from a direct effect of GLP-1 on iNKTcells. Methods We measured circulating and psoriatic plaque iNKT cell numbers in two patients with type 2 diabetes and psoriasis before and after commencing GLP-1 analogue therapy. In addition, we investigated the in vitro effects of GLP-1 on iNKT cells and looked for a functional GLP-1 receptor on these cells. Results The Psoriasis Area and Severity Index improved in both patients following 6 weeks of GLP-1 analogue therapy. This was associated with an alteration in iNKT cell number, with an increased number in the circulation and a decreased number in psoriatic plaques. The GLP-1 receptor was expressed on iNKT cells, and GLP-1 induced a dose-dependent inhibition of iNKT cell cytokine secretion, but not cytolytic degranulation in vitro. Conclusions/interpretation The clinical effect observed and the direct interaction between GLP-1 and the immune system raise the possibility of therapeutic applications for GLP-1 in inflammatory conditions such as psoriasis

    Morphological and Structural Aspects of the Extremely Halophilic Archaeon Haloquadratum walsbyi

    Get PDF
    Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16–20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies

    Non-steroidal anti-inflammatory drug-induced apoptosis in gastric cancer cells is blocked by protein kinase C activation through inhibition of c-myc

    Get PDF
    Apoptosis plays a major role in gastrointestinal epithelial cell turnover, ulcerogenesis and tumorigenesis. We have examined apoptosis induction by non-steroidal anti-inflammatory drugs (NSAIDs) in human gastric (AGS) cancer cells and the role of protein kinase C (PKC) and apoptosis-related oncogenes. After treatment with aspirin or indomethacin, cell growth was quantified by MTT assay, and apoptosis was determined by acridine orange staining, DNA fragmentation and flow cytometry. The mRNA and protein of p53, p21waf1/cip1 and c-myc was detected by Northern and Western blotting respectively. The influence of PKC on indomethacin-induced apoptosis was determined by co-incubation of 12-O-tetradecanoylphorbol 13-acetate (TPA). The role of c-myc was determined using its antisense oligonucleotides. The results showed that both aspirin and indomethacin inhibited cell growth and induced apoptosis of AGS cells in a dose- and time-dependent manner, without altering the cell cycle. Indomethacin increased c-myc mRNA and protein, whereas p53 and p21waf1/cip1 were unchanged. Down-regulation of c-myc by its antisense oligonucleotides reduced apoptosis induction by indomethacin. TPA could inhibit indomethacin-induced apoptosis and accumulate cells in G2/M. Overexpression of c-myc was inhibited by TPA and p21waf1/cip1 mRNA increased. In conclusion, NSAIDs induce apoptosis in gastric cancer cells which may be mediated by up-regulation of c-myc proto-oncogene. PKC activation can abrogate the effects of NSAIDs by decreasing c-myc expression. © 1999 Cancer Research Campaig

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lectins are mainly described as simple carbohydrate-binding proteins. Previous studies have tried to identify other binding sites, which possible recognize plant hormones, secondary metabolites, and isolated amino acid residues. We report the crystal structure of a lectin isolated from <it>Canavalia gladiata </it>seeds (CGL), describing a new binding pocket, which may be related to pathogen resistance activity in ConA-like lectins; a site where a non-protein amino-acid, α-aminobutyric acid (Abu), is bound.</p> <p>Results</p> <p>The overall structure of native CGL and complexed with α-methyl-mannoside and Abu have been refined at 2.3 Å and 2.31 Å resolution, respectively. Analysis of the electron density maps of the CGL structure shows clearly the presence of Abu, which was confirmed by mass spectrometry.</p> <p>Conclusion</p> <p>The presence of Abu in a plant lectin structure strongly indicates the ability of lectins on carrying secondary metabolites. Comparison of the amino acids composing the site with other legume lectins revealed that this site is conserved, providing an evidence of the biological relevance of this site. This new action of lectins strengthens their role in defense mechanisms in plants.</p
    • …
    corecore