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ABSTRACT 

In order to optimize surface-enhanced Raman scattering (SERS) of noble metal nanostructures for 

enabling chemical identification of analyte molecules, careful design of nanoparticle structures 

must be considered. We spatially map the local SERS enhancements across individual micro-

aggregates comprised of monodisperse nanoparticles separated by rigid monodisperse 0.9 nm 

gaps and show the influence of depositing these onto different underlying substrates.  

Experiments and simulations show that the gaps between neighbouring nanoparticles dominate 

the SERS enhancement far more than the gaps between nanoparticles and substrate.  

Metal nanoparticle aggregates support a large number of plasmonic hotspots within the inter-nanoparticle 

gaps, which can be used to probe molecular vibrations of analytes through surface-enhanced Raman 

scattering (SERS)
1,2

. The high sensitivity of SERS and its consequent utilisation as a sensing technique has 

been demonstrated in a number of studies
3–11

.  Various methods have been used to form aggregates from 

colloidal nanoparticles, including DNA
7,12

, proteins
9,13

, dyes
14

, alcohols
6
, polymers

15,16
, and optical fields

17–20
, 

however these methods generally form agglomerates with wide variation in configurations and gap sizes. In 

such systems a large number of molecules across multiple hot-spots are probed in time, producing only a 

collective overall SERS signal. For typical colloidal aggregation onto a substrate, the very wide range in gap 

sizes produces broad absorption across the visible and near-infrared spectrum, and sporadically located 

‘hot-spots’ in real space
21,22

. In all these hot-spot crevices, each molecule sees a different orientation, 

strength, and resonant frequency of the optical-excited plasmon field. This means that the SERS averages 

over all field-molecule configurations, which is undesirable for studying selection rules, nonlinear 

vibrational phenomena, and for robust uniform sensing.  

Here, we assemble and probe nanoparticle aggregates with precisely fixed sub-nm gaps, and precisely 

oriented molecules and optical fields
23

. In order to map the Raman signal from individual aggregates 

without having to track these as they diffuse in solution, we bind them onto solid substrates. The optimal 

SERS emission is found to be on Au substrates rather than SiO2 or Si, and can be explained from image 

charge interactions. Placing analyte molecules into these precise sub-nm hotspots of high plasmonic 

enhancement allows us to spatially map the signals across single aggregates.  The tight focusing of light 

possible in this geometry gives better collection and thus higher SERS signals than with lower NA objectives 
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averaging over many aggregates at once, either on substrates or in solution. This enables the robust 

prospect of sensing sub-nanomolar concentrations, for use in gas sensing and flow microfluidics for 

pharmaceuticals and biological cell sensing. 

 

Figure 1. (a,b) Nanoparticle aggregation by addition of cucurbit[7]uril (CB[7]), shown in (b). (c) Bright-field image of aggregate dried 

onto gold substrate. (d) Schematic distribution of chain (red) and dimer (blue) plasmon modes. (e) Time-resolved extinction spectra 

over 10 mins, showing decrease in single-particle mode and increase in chain modes (laser wavelengths shown dashed, inset shows 

ratio of coupled mode to transverse mode over time. (f) SERS spectrum of Au:CB[7] aggregate in solution (red) and CB[7] powder 

for reference (black, x5 for visibility). Red arrow indicates CB vibration mapped in later images. 

 

The metal nanoparticle aggregates are self-assembled in solution by the addition of the spacer molecule 

cucurbit[7]uril to 40nm diameter colloidal gold nanoparticles. Cucubit[n]urils (CB[n]s) are a series of rigid 

and initially-empty barrel-shaped molecules with hydrophobic cavities and hydrophilic carbonyl portals 

which bind strongly to gold (Fig.1a,b)
24

. Previous work shows that CB[n] readily aggregates Au nanoparticles 

forming a precise interparticle separation of 0.9nm, and providing a reliable way to form optically-active 

long aggregate chains with fractal-like structures
25

. Such nanoscale gaps between plasmonic metals trap 

incident light at specific resonant wavelengths, greatly enhancing the optical field and thus the Raman 

scattering of molecules within the gap. Due to their stiff hollow structures, CB[n]s can encapsulate 

hydrophobic or cationic molecules, making this construct suitable for gas and chemical sensing. Other 

macromolecules such as cyclodextrin have also been shown to encapsulate analyte molecules for sensing 

with SERS
26,27

, however the inter-nanoparticle gaps formed are not as rigidly spaced as those formed with 

CB[n], meaning the plasmon cannot couple to form chain plasmon modes in the same way. Additionally 

CB[7] is a member of a family of CB[n] molecules, which can be selectively chosen to suit the particle 

analyte of interest. Normally such aggregates are observed in solution, where they fill only a small amount 

of the optical focal region, thus reducing the available SERS signal. Here, once the aggregates are formed, 

they are drop cast onto different substrates at sufficiently low concentration to image them individually 
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(although binding them in-situ within microfluidic channels is also effective). The aggregates are visible in 

bright-field images (Fig.1c), with corresponding scanning electron micrographs showing their 3D fractal 

geometry (SI). The strong CB-Au binding (~0.3 eV/molecule) means that drop casting aggregates onto a 

substrate does not markedly change their 3D structure
28

. 

 

Because the identical plasmonic gaps in such assemblies support degenerate localised plasmon modes, 

charge oscillations in one nano-gap mix strongly with charge oscillations of surrounding nano-gaps, 

resulting in spatially-distributed plasmonic modes. These complex modes can be broken down into 3 main 

types, which are observed in real-time optical scattering as the nanoparticles aggregate together (Fig. 1d,e). 

Further explanation of this aggregation has been extensively studied in our previous work
25

. Initially the 

individual nanoparticles support a monomer plasmon mode at 530 nm. Adding CB[7] first induces 

dimerization resulting in a new mode at 640 nm while the single particle mode decreases. At later times, 

higher wavelength chain modes emerge as the aggregate size increases, red-shifting with increasing chain 

length. Although the single-particle and dimer modes are still supported at the peripheries of large 

aggregates, the optical response is dominated by chain modes which are delocalised across the entire 

structure. Nanoparticle aggregates saturate in size once surface coverage of CB[7] limits the probability of 

further aggregation.   

The enhanced optical field within each gap allows the SERS of the surface-bound CB in the gaps to be 

observed, giving a number of characteristic peaks (Fig. 1f). Here, we use the Raman strength of one 

particular CB vibration (the 832 cm
-1

 peak corresponding to a ring-breathing mode) as a marker of the SERS 

activity at each gap site positioned precisely in between nanoparticles. By spatially mapping the intensity of 

this CB[7] peak, the optical field variations can be tracked over the aggregate structure. As well as the peak 

intensity of this vibrational mode, the plasmonic background can also be mapped across the aggregate 

area, and its intensity is found to be directly correlated to that of the SERS peaks. 

To understand how to optimise the SERS emission from single aggregates, different substrates are 

compared (Fig.2). Besides the plasmonic coupling between NPs, there can also be coupling to the 

underlying substrate
29,30

 and this will be different for the 3 types of plasmonic mode within such 

aggregates
29

 (see below). After drop-casting onto the three substrate types (template-stripped gold, bare 

silicon wafer, and glass coverslip), SERS spectra are mapped using a confocal pinhole with either a 633 nm 

or 785 nm laser, across 12μm×12μm areas in 100 nm steps (Fig. 2a-c). The integrated area under the 

832 cm
-1

 ring-breathing mode is extracted for each spatial position to give a map of SERS emission, 

normalised to the incident laser power. The aggregate shape is clearly reproduced in these SERS maps on 

all the substrates, although the signal is much reduced on Si. The strong correlation between bright-field 

scatter and SERS signals across each point in the image maps is evident for all 3 systems (Fig.2d). 
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Figure 2. (a-c) Bright-field images and intensity maps showing SERS signals and plasmonic background for AuNP:CB aggregates 

drop-cast onto (a) gold, (b) silicon, and (c) silicon dioxide substrates. Identical colour scales except where indicated. (d) Scatter plot 

showing correlation between BF extinction of each pixel and its SERS intensity with 785nm excitation laser, for all three substrates. 

(e) Stacked bar-chart showing averaged SERS (filled) and background (open) across the mapped aggregate image for different 

substrates, at excitation wavelengths of 633 and 785 nm. Inset shows equivalent measurement for AuNPs:CB in solution, with 

pump laser 633 nm (left) and 785 nm (right).     

Since on average, scattering is related to the number of CB:Au nanogaps at each pixel, this shows that SERS 

linearly adds from each nanogap
31

. This is analogous to the typical linear increase of both SERS and 

extinction with the number of nanoparticles when no coupling between them is present. In order to 

quantify the efficiency of each aggregate system as a SERS substrate, the average SERS intensity for the 

aggregate (within its interior region on the map) was calculated. This is shown by the stacked bars in Fig. 

2e, with the open bar components indicating the strength of the background signals. The 785 nm laser 

gives consistently higher signals than using a 633 nm laser, due to its resonance with the chain modes of 

the Au aggregates, (Fig. 1e, dashed). It also gives SERS peaks of similar strength to the SERS background, 

while the background dominates at 633 nm. Comparing the SERS intensity between aggregates deposited 

on the different substrates, shows that deposition onto a gold substrate gives the strongest signals. As we 

demonstrate below, this is due to the plasmonic coupling of gap plasmons to image charges that occurs 

when metal nanostructures are placed above gold mirrors. However the SERS signal is only two-fold weaker 

for aggregates deposited on SiO2, where there is no such plasmonic coupling to the substrate, suggesting 
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this coupling is not the dominant factor for SERS enhancement. By calibrating the bright-field reflectance, 

we are able to estimate that each pixel contributes signal from 1 NP-NP junction containing ~100 close-

packed CB molecules, and gives a total SERS integrated signal of 1000 cts/mW/s. Thus we estimate that 

each CB molecule contributes 10 cts/mW/s, in line with the expected non-resonant SERS cross-section and 

the plasmon local field, matching SERS observations from single nanoparticle gaps containing CBs in the 

nanoparticle-on-mirror configuration
30,32

. With unity CCD gain and the optimised system throughput for 

detection of ~10% this suggests 100 SERS photons emitted/mW/s/molecule for the strongest lines in these 

non-aromatic molecules.  

To compare with the colloidally-suspended aggregates normally used, equivalent measurements of CB[7] 

SERS signals are taken with Au:CB aggregates in solution (inset Fig. 2e). The SERS intensity is found to be 

1000-fold smaller when compared to aggregates deposited on SiO2, which is the reduction expected due to 

the dilution of aggregate density within the focal optical volume probed at any time, averaged by diffusion. 

The amplification in signal due to deposition on a substrate is greater when using a gold substrate, due to 

the extra degree of plasmonic enhancement. Conversely it is lessened for Si due to absorption into the 

substrate. Surprisingly we find that the signal from the 785 nm laser in such solution aggregates is now 5-

fold weaker than from 633 nm, the opposite ratio to the dried aggregates, even though wet and dry 

extinction spectra can be similar as we now investigate. 

 

Figure 3. (a-c) Dark-field scattering spectra of aggregates on (a) Au, (b) Si, and (c) SiO2. (d) FDTD simulated scattering cross sections 

of a 4 nanoparticle chain spaced above Au, Si, and SiO2 substrates. Dashed line shows experimental results for scattering of the 

aggregates in water with no substrate. 

To understand this more clearly, dark-field scattering measurements are taken to probe the plasmon 

resonances of a number of aggregates on the different substrates (Fig. 3a-c). These experimental scattering 

spectra are taken over an assortment of representative aggregates and positions, evidencing expected 

spatial inhomogeneities (Fig.1d) but generally common features on each substrate. While a weak single-

particle mode at 530 nm is always visible, the dominant chain modes are clearly seen to longer 

wavelengths. These red-shifted peak positions depend on the coupling strength, set by how effectively 

nanoparticle charge oscillations generate image charges in each substrate. When on SiO2 the coupled mode 

is similar as in solution, however it shifts to shorter wavelengths and weakens when placed on Si due to the 
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damping by absorption in the semiconductor. This is also the reason that SERS is so much weaker on the Si 

substrates, since both elastic and inelastic scattering are similarly affected.  

By contrast, aggregates on gold instead show especially large variation in this coupled-mode spectral 

position, shifted far more into the infrared and with multiple resonances. This higher degree of coupling to 

the gold substrate can be confirmed using full 3D finite-difference time domain (FDTD) simulations. We 

mimic the experimental configuration with a toy model comprised of a chain of 4 nanoparticles spaced 

above substrates of gold, Si or SiO2 (Fig. 3d).
33,34

 The spacer layers at each NP-NP junction as well as the 

substrate-NP junction have refractive index of 1.4 to match that of CB[7]
30

. The scattering cross section as a 

function of wavelength is obtained for normal plane-wave illumination with polarization along the chain. 

Due to computational intractability it is not feasible to fully model entire aggregates with complex 

geometries
22

, hence the modal positions calculated are only indicative (and blue-shifted from experiment 

as expected for shorter chains
35

). The stronger coupling of Au substrates to the CB-spaced plasmonic gaps 

indeed gives higher wavelength modes in the FDTD simulated spectra, as compared to the non-metallic 

substrates. 

 
Figure 4. (a-c) FDTD simulations showing |E| surrounding a 4-nanoparticle chain spaced 0.9 nm above an infinite substrate of Au, 

Si, SiO2 respectively. Each is shown for the relevant resonant wavelength and colour scales are identical. Graphs below show the 

near-field spectra at the central NP-NP and substrate-NP junction for each system (dashed region marked).  

 

To identify which regions within the aggregates are involved in the substrate coupling, near-field 

enhancements, |E| are extracted from the simulations (Fig.4). We distinguish hotspots at the junction 
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between two nanoparticles (NP-NP junctions) and those at the interface between substrate and 

nanoparticle (sub-NP junctions). At the substrate-NP junction, the near-field spectra show much higher gap 

field intensities with the gold substrate. Indeed, this enhancement is often used for single NPs on Au 

substrates (known as nanoparticle-on-mirror
29,30

). By contrast in the NP-NP junctions, aggregates on SiO2 or 

Au have comparable near-field intensities, with Si again weaker from absorption. Additionally, field 

intensities in NP-NP junctions are many-fold stronger than in the substrate-NP junction in all cases (Fig. 4 

lower graphs). This suggests that for dried aggregate geometries the field between nanoparticles is largely 

responsible for hotspot effects such as SERS, confirming what was indicated by the intensities of SERS maps 

in Fig.2e. On the other hand, the near-field spectra of the NP-NP junctions are red-shifted for the Au 

substrate (compared to on the SiO2 substrate), showing that they are well-coupled to the substrate-NP 

junctions. For this reason careful choice of substrate is needed in order to maximise SERS signal 

enhancements.  

We thus evidence how signals can be enhanced 1000-fold by casting Au:CB SERS aggregates onto glass, 

with Au substrates giving an extra factor of two gain due to image charges. Excitation with 785 nm laser 

light improves the signal-to-noise in SERS emission, due to the decreased background contributions (which 

come from light emission by electronic Raman scattering coupled by the plasmons
36,37

). The linearity of 

SERS emission with number of junctions implies each sums incoherently into the total. Our signals of 

>10
3
 counts/mW/s (or >10 counts/mW/s per molecule, input power density 650μW/μm

2
) from 

electronically non-resonant, non-aromatic molecules provides strong encouragement for sensing 

applications, for instance of neuro-active molecules in urine
38

. These aggregates remain stable for SERS for 

indefinite periods, and thus form stable SERS substrates in microfluidics contexts. 

In conclusion, we present detailed analysis of the factors controlling the SERS intensity from nanoparticle 

aggregates with precise identical 0.9 nm gaps, using the CB spacer as a vibrational marker. Our results show 

that excitation with 785 nm laser light gives the strongest Raman signals from analytes, due to optimal 

overlap with the resonance wavelength of the chain modes within the aggregates. We additionally 

demonstrate how deposition of aggregates onto a substrate enhances the SERS signal by a factor of 1000, 

and even more if plasmonically active substrates are used. We illustrate that the inter-nanoparticle gaps 

dominate the near-field Raman response rather than the coupling of aggregate to image charges within the 

substrate. Our findings indicate the need for careful consideration of nano-systems when using surface-

enhanced Raman scattering as a sensing technique, and pave the way for robust sensitive measurements 

suited to personalised healthcare technologies.    

 

Methods 

Sample preparation: Silicon wafers are purchased from Si-Mat, and SiO2 cover slips (50 μm thickness) from 

Thermo Scientific. Atomically smooth gold substrates are prepared by e-beam evaporation of 100 nm gold 

layers onto a clean silicon wafer. This is then heated to 60˚C, and small pieces of silicon glued to it and then 

cured, before being peeled off to reveal a ultra-smooth gold surface. The nanoparticle aggregates were 

self-assembled by adding 25 μl of 1 mM CB[7] solution to 1000 μl 40 nm gold nanoparticles in a citrate 

buffer (BBI solutions). The aggregates were then drop cast onto the 3 substrates, left to dry and then rinsed 

with deionized water.  

Simulation: Finite-difference time-domain simulations were carried out using Lumerical FDTD Solutions 

v8.12. A simple aggregate geometry was modelled as 4 gold spheres spaced above an infinite sheet of Au, 
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Si, or SiO2 by 4 dielectric cylinders of height 0.9 nm and refractive index 1.4, to correspond to the CB[7] 

layer. The 4 spheres are also spaced apart from each other by identical cylinders. The construct was 

illuminated by a normal plane wave.  

Raman measurements: Raman microscopy was performed using a Renishaw inVia Raman microscope, using 

a 100× objective with numerical aperture NA = 0.75. Excitation was performed with either 633nm or 

785nm, with a power density of 650μW/μm
2
 for each. All measurements were normalised to laser power 

and integration time. Measurements were taken with unity CCD gain. 

Supporting Information 

Scanning electron micrographs show 3D fractal geometry of 80 nm nanoparticle aggregates self-assembled 

via addition of cucurbit[7]uril. 
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