505 research outputs found

    Electrochromic window with lithium conductive polymer electrolyte

    Get PDF
    An electrochromic window was built using WO3 as electrochromic material and V2O5 as counterelectrode. Both were deposited onto ITO-coated glass panes by vacuum evaporation and were amorphous to x-ray diffraction. The electrolyte was a lithium-conducting polymer consisting of a poly(ethylene oxide)-lithium salt complex. The electrochemical characterization of electrodes was realized by cyclic voltammetry, coulometric titration, and impedance spectroscopy, which allowed the determination of the chemical diffusion coefficients of lithium into WO3 and V2O5. Potentiostatic cycling of the complete transmissive cell yields to a transmission variation from 41 to 13% at 633 nm with a response time of 10s at room temperature

    Selective Principal Component Extraction and Reconstruction: A Novel Method for Ground Based Exoplanet Spectroscopy

    Full text link
    Context: Infrared spectroscopy of primary and secondary eclipse events probes the composition of exoplanet atmospheres and, using space telescopes, has detected H2O, CH4 and CO2 in three hot Jupiters. However, the available data from space telescopes has limited spectral resolution and does not cover the 2.4 - 5.2 micron spectral region. While large ground based telescopes have the potential to obtain molecular-abundance-grade spectra for many exoplanets, realizing this potential requires retrieving the astrophysical signal in the presence of large Earth-atmospheric and instrument systematic errors. Aims: Here we report a wavelet-assisted, selective principal component extraction method for ground based retrieval of the dayside spectrum of HD 189733b from data containing systematic errors. Methods: The method uses singular value decomposition and extracts those critical points of the Rayleigh quotient which correspond to the planet induced signal. The method does not require prior knowledge of the planet spectrum or the physical mechanisms causing systematic errors. Results: The spectrum obtained with our method is in excellent agreement with space based measurements made with HST and Spitzer (Swain et al. 2009b; Charbonneau et al. 2008) and confirms the recent ground based measurements (Swain et al. 2010) including the strong 3.3 micron emission.Comment: 4 pages, 3 figures; excepted for publication by A&

    A silicate disk in the heart of the Ant

    Full text link
    We aim at getting high spatial resolution information on the dusty core of bipolar planetary nebulae to directly constrain the shaping process. Methods: We present observations of the dusty core of the extreme bipolar planetary nebula Menzel 3 (Mz 3, Hen 2-154, the Ant) taken with the mid-infrared interferometer MIDI/VLTI and the adaptive optics NACO/VLT. The core of Mz 3 is clearly resolved with MIDI in the interferometric mode, whereas it is unresolved from the Ks to the N bands with single dish 8.2 m observations on a scale ranging from 60 to 250 mas. A striking dependence of the dust core size with the PA angle of the baselines is observed, that is highly suggestive of an edge-on disk whose major axis is perpendicular to the axis of the bipolar lobes. The MIDI spectrum and the visibilities of Mz 3 exhibit a clear signature of amorphous silicate, in contrast to the signatures of crystalline silicates detected in binary post-AGB systems, suggesting that the disk might be relatively young. We used radiative-transfer Monte Carlo simulations of a passive disk to constrain its geometrical and physical parameters. Its inclination (74 degrees ±\pm 3 degrees) and position angle (5 degrees ±\pm 5 degrees) are in accordance with the values derived from the study of the lobes. The inner radius is 9±\pm 1 AU and the disk is relatively flat. The dust mass stored in the disk, estimated as 1 x 10-5Msun, represents only a small fraction of the dust mass found in the lobes and might be a kind of relic of an essentially polar ejection process

    Ground-based NIR emission spectroscopy of HD189733b

    Full text link
    We investigate the K and L band dayside emission of the hot-Jupiter HD 189733b with three nights of secondary eclipse data obtained with the SpeX instrument on the NASA IRTF. The observations for each of these three nights use equivalent instrument settings and the data from one of the nights has previously reported by Swain et al (2010). We describe an improved data analysis method that, in conjunction with the multi-night data set, allows increased spectral resolution (R~175) leading to high-confidence identification of spectral features. We confirm the previously reported strong emission at ~3.3 microns and, by assuming a 5% vibrational temperature excess for methane, we show that non-LTE emission from the methane nu3 branch is a physically plausible source of this emission. We consider two possible energy sources that could power non-LTE emission and additional modelling is needed to obtain a detailed understanding of the physics of the emission mechanism. The validity of the data analysis method and the presence of strong 3.3 microns emission is independently confirmed by simultaneous, long-slit, L band spectroscopy of HD 189733b and a comparison star.Comment: ApJ accepte

    The nebula around the post-AGB star 89 Her

    Get PDF
    We aim to study the structure of the nebula around the post-AGB, binary star 89 Her. The presence of a rotating disk around this star had been proposed but not been yet confirmed by observations. We present high-resolution PdBI maps of CO J=2-1 and 1-0. Properties of the nebula are directly derived from the data and model fitting. We also present N-band interferometric data on the extent of the hot dust emission, obtained with the VLTI. Two nebular components are found: (a) an extended hour-glass-like structure, with expansion velocities of about 7 km/s and a total mass ~ 3 103^{-3} Mo, and (b) an unresolved very compact component, smaller than ~ 0.4" and with a low total velocity dispersion of ~ 5 km/s. We cannot determine the velocity field in the compact component, but we argue that it can hardly be in expansion, since his would require too recent and too sudden an ejection of mass. On the other hand, assuming that this component is a keplerian disk, we derive disk properties that are compatible with expectations for such a structure; in particular, the size of the rotating gas disk should be very similar to the extent of the hot dust component from our VLTI data. Assuming that the equator of the extended nebula coincides with the binary orbital plane, we provide new results on the companion star mass and orbit.Comment: 4 pages, 3 figure

    Lifestyle behaviors in Black and White women with a family history of breast cancer

    Get PDF
    To examine lifestyle behaviors among non-Hispanic Black and White women with a family history of breast cancer and determine the extent to which they meet American Cancer Society (ACS) Nutrition and Physical Activity Recommendations for Breast Cancer Prevention

    Early-Life Exposures and Early-Onset Uterine Leiomyomata in Black Women in the Sister Study

    Get PDF
    Background: Uterine leiomyomata (fibroids) are hormonally responsive tumors, but little is known about risk factors. Early-life exposures may influence uterine development and subsequent response to hormones in adulthood. An earlier analysis of non-Hispanic white women who participated in the Sister Study found associations between several early-life factors and early-onset fibroids

    Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators

    Full text link
    While the first binary post-AGB stars were serendipitously discovered, the distinct characteristics of their Spectral Energy Distribution (SED) allowed us to launch a more systematic search for binaries. We selected post-AGB objects which show a broad dust excess often starting already at H or K, pointing to the presence of a gravitationally bound dusty disc in the system. We started a very extensive multi-wavelength study of those systems and here we report on our radial velocity and photometric monitoring results for six stars of early F type, which are pulsators of small amplitude. To determine the radial velocity of low signal-to-noise time-series, we constructed dedicated auto-correlation masks. The radial velocity variations were subjected to detailed analysis to differentiate between pulsational variability and variability due to orbital motion. Finally orbital minimalisation was performed to constrain the orbital elements. All of the six objects are binaries, with orbital periods ranging from 120 to 1800 days. Five systems have non-circular orbits. The mass functions range from 0.004 to 0.57 solar mass and the companions are likely unevolved objects of (very) low initial mass. We argue that these binaries must have been subject to severe binary interaction when the primary was a cool supergiant. Although the origin of the circumstellar disc is not well understood, the disc is generally believed to be formed during this strong interaction phase. The eccentric orbits of these highly evolved objects remain poorly understood. With the measured orbits and mass functions we conclude that the circumbinary discs seem to have a major impact on the evolution of a significant fraction of binary systems.Comment: 13 pages, 15 figures, accepted for Astronomy and Astrophysic
    corecore