276 research outputs found

    The talar morphology of a hypochondroplasic dwarf: A case study from the Italian Late Antique period

    Get PDF
    This project aims to test whether geometric morphometric (GM) and trabecular analyses may be useful tools in identifying talar characteristics related to hypochondroplasia. We quantified the external and internal talar morphology of a hypochondroplasic dwarf (T17) from Modena (northern Italy) dated to the sixth century AD. External talar morphology of T17 was compared with a broad sample of modern human tali (n = 159) using GM methods. Additionally, a subsample of these tali (n = 41) was used to investigate whole talar trabecular changes in T17. Our results show that GM and trabecular analyses identify a combination of traits linked to the dwarfing disorder of hypochondroplasia. These traits include decreased scaled talar dimensions compared with normal-sized individuals, presence of an accessory antero-lateral talar facet, high bone volume fraction, and high anisotropy values throughout the entire talus. In our case study, hypochondroplasia does not appear to substantially modify external talar morphology probably due to the fast growth of the talus. We suggest that small talar dimensions are associated with hypochondroplasia. An antero-lateral talar facet may result from the talus and calcaneus coalition (i.e., talocalcaneal abnormal bridging) possibly related to an everted foot posture that was limited by overgrowth of the fibula. We suggest that high talar trabecular density and strut orientation provide insights into pathological development of the trabecular plates in T17. Finally, our study suggests that high talar trabecular density and strut orientation, and small talar dimensions, may be added as possible concomitant talar hallmarks for hypochondroplasia

    Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    Get PDF
    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models

    A latent trait approach to measuring HIV/AIDS related stigma in healthcare professionals: application of mokken scaling technique

    Get PDF
    The attitudes of healthcare professionals towards HIV positive patients and high risk groups are central to the quality of care and therefore to the management of HIV/AIDS related stigma in health settings. Extant HIV/AIDS stigma scales that measure stigmatising attitudes towards people living with HIV/AIDS have been developed using scaling techniques such as principal component analysis. This approach has resulted in instruments that are often long. Mokken scale analysis is a nonparametric hierarchical scaling technique that can be used to develop unidimensional cumulative scales. This technique is advantageous over the other approaches; as the scales are usually shorter, while retaining acceptable psychometric properties. Moreover, Mokken scales also make no distributional assumptions about the underlying data, other than that the data are capable of being ordered by item and by person. In this study we aimed at developing a precise and concise measure of HIV/AIDS related stigma among health care professionals, using Mokken scale analysis

    TRAIL treatment provokes mutations in surviving cells

    Get PDF
    Chemotherapy and radiotherapy commonly damage DNA and trigger p53-dependent apoptosis through intrinsic apoptotic pathways. Two unfortunate consequences of this mechanism are resistance due to blockade of p53 or intrinsic apoptosis pathways, and mutagenesis of non-malignant surviving cells which can impair cellular function or provoke second malignancies. Death ligand-based drugs, such as tumor necrosis factor-related apoptosis inducing ligand (TRAIL), stimulate extrinsic apoptotic signaling, and may overcome resistance to treatments that induce intrinsic apoptosis. As death receptor ligation does not damage DNA as a primary mechanism of pro-apoptotic action, we hypothesized that surviving cells would remain genetically unscathed, suggesting that death ligand-based therapies may avoid some of the adverse effects associated with traditional cancer treatments. Surprisingly, however, treatment with sub-lethal concentrations of TRAIL or FasL was mutagenic. Mutations arose in viable cells that contained active caspases, and overexpression of the caspase-8 inhibitor crmA or silencing of caspase-8 abolished TRAIL-mediated mutagenesis. Downregulation of the apoptotic nuclease caspase-activated DNAse (CAD)/DNA fragmentation factor 40 (DFF40) prevented the DNA damage associated with TRAIL treatment. Although death ligands do not need to damage DNA in order to induce apoptosis, surviving cells nevertheless incur DNA damage after treatment with these agents

    Adaptive Evolution and the Birth of CTCF Binding Sites in the Drosophila Genome

    Get PDF
    Changes in the physical interaction between cis-regulatory DNA sequences and proteins drive the evolution of gene expression. However, it has proven difficult to accurately quantify evolutionary rates of such binding change or to estimate the relative effects of selection and drift in shaping the binding evolution. Here we examine the genome-wide binding of CTCF in four species of Drosophila separated by between ~2.5 and 25 million years. CTCF is a highly conserved protein known to be associated with insulator sequences in the genomes of human and Drosophila. Although the binding preference for CTCF is highly conserved, we find that CTCF binding itself is highly evolutionarily dynamic and has adaptively evolved. Between species, binding divergence increased linearly with evolutionary distance, and CTCF binding profiles are diverging rapidly at the rate of 2.22% per million years (Myr). At least 89 new CTCF binding sites have originated in the Drosophila melanogaster genome since the most recent common ancestor with Drosophila simulans. Comparing these data to genome sequence data from 37 different strains of Drosophila melanogaster, we detected signatures of selection in both newly gained and evolutionarily conserved binding sites. Newly evolved CTCF binding sites show a significantly stronger signature for positive selection than older sites. Comparative gene expression profiling revealed that expression divergence of genes adjacent to CTCF binding site is significantly associated with the gain and loss of CTCF binding. Further, the birth of new genes is associated with the birth of new CTCF binding sites. Our data indicate that binding of Drosophila CTCF protein has evolved under natural selection, and CTCF binding evolution has shaped both the evolution of gene expression and genome evolution during the birth of new genes

    Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci.

    Get PDF
    Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families.All authors are members of the EUCID.net network, funded by COST (BM1208). TE is funded by the German Ministry of research and education (01GM1513B). GPdN is funded by I3SNS Program of the Spanish Ministry of Health (CP03/0064; SIVI 1395/09), Instituto de Salud Carlos III (PI13/00467) and Basque Department of Health (GV2014/111017).This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13148-015-0143-

    Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence.

    Get PDF
    Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation
    corecore