120 research outputs found

    Inflammatory B cells correlate with failure to checkpoint blockade in melanoma patients.

    Get PDF
    The understanding of the role of B cells in patients with solid tumors remains insufficient. We found that circulating B cells produced TNFα and/or IL-6, associated with unresponsiveness and poor overall survival of melanoma patients treated with anti-CTLA4 antibody. Transcriptome analysis of B cells from melanoma metastases showed enriched expression of inflammatory response genes. Publicly available single B cell data from the tumor microenvironment revealed a negative correlation between TNFα expression and response to immune checkpoint blockade. These findings suggest that B cells contribute to tumor growth via the production of inflammatory cytokines. Possibly, these B cells are different from tertiary lymphoid structure-associated B cells, which have been described to correlate with favorable clinical outcome of cancer patients. Further studies are required to identify and characterize B cell subsets and their functions promoting or counteracting tumor growth, with the aim to identify biomarkers and novel treatment targets

    Pericytes regulate vascular immune homeostasis in the CNS.

    Full text link
    Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood-brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfb ret/ret ), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfb ret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti-ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfb ret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfb ret/ret ;2D2 tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder

    Identification of Prognostic Molecular Features in the Reactive Stroma of Human Breast and Prostate Cancer

    Get PDF
    Primary tumor growth induces host tissue responses that are believed to support and promote tumor progression. Identification of the molecular characteristics of the tumor microenvironment and elucidation of its crosstalk with tumor cells may therefore be crucial for improving our understanding of the processes implicated in cancer progression, identifying potential therapeutic targets, and uncovering stromal gene expression signatures that may predict clinical outcome. A key issue to resolve, therefore, is whether the stromal response to tumor growth is largely a generic phenomenon, irrespective of the tumor type or whether the response reflects tumor-specific properties. To address similarity or distinction of stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to compare the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Invasive breast and prostate cancer-associated stroma was observed to display distinct transcriptomes, with a limited number of shared genes. Interestingly, both breast and prostate tumor-specific dysregulated stromal genes were observed to cluster breast and prostate cancer patients, respectively, into two distinct groups with statistically different clinical outcomes. By contrast, a gene signature that was common to the reactive stroma of both tumor types did not have survival predictive value. Univariate Cox analysis identified genes whose expression level was most strongly associated with patient survival. Taken together, these observations suggest that the tumor microenvironment displays distinct features according to the tumor type that provides survival-predictive value

    Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options.

    Get PDF
    TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease

    Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer

    Get PDF
    Neoadjuvant and adjuvant chemotherapies provide survival benefits to breast cancer patients, in particular in estrogen receptor negative (ER-) cancers, by reducing rates of recurrences. It is assumed that the benefits of (neo)adjuvant chemotherapy are due to the killing of disseminated, residual cancer cells, however, there is no formal evidence for it. Here, we provide experimental evidence that ER- breast cancer cells that survived high-dose Doxorubicin and Methotrexate based chemotherapies elicit a state of immunological dormancy. Hallmark of this dormant phenotype is the sustained activation of the IRF7/IFN-beta/IFNAR axis subsisting beyond chemotherapy treatment. Upregulation of IRF7 in treated cancer cells promoted resistance to chemotherapy, reduced cell growth and induced switching of the response from a myeloid derived suppressor cell-dominated immune response to a CD4(+)/CD8(+) T cell-dependent anti-tumor response. IRF7 silencing in tumor cells or systemic blocking of IFNAR reversed the state of dormancy, while spontaneous escape from dormancy was associated with loss of IFN-beta production. Presence of IFN-beta in the circulation of ER- breast cancer patients treated with neoadjuvant Epirubicin chemotherapy correlated with a significantly longer distant metastasis-free survival. These findings establish chemotherapy-induced immunological dormancy in ER- breast cancer as a novel concept for (neo)adjuvant chemotherapy activity, and implicate sustained activation of the IRF7/IFN-beta/IFNAR pathway in this effect. Further, IFN-beta emerges as a potential predictive biomarker and therapeutic molecule to improve outcome of ER- breast cancer patients treated with (neo)adjuvant chemotherapy.Peer reviewe

    SNARE Protein Mimicry by an Intracellular Bacterium

    Get PDF
    Many intracellular pathogens rely on host cell membrane compartments for their survival. The strategies they have developed to subvert intracellular trafficking are often unknown, and SNARE proteins, which are essential for membrane fusion, are possible targets. The obligate intracellular bacteria Chlamydia replicate within an intracellular vacuole, termed an inclusion. A large family of bacterial proteins is inserted in the inclusion membrane, and the role of these inclusion proteins is mostly unknown. Here we identify SNARE-like motifs in the inclusion protein IncA, which are conserved among most Chlamydia species. We show that IncA can bind directly to several host SNARE proteins. A subset of SNAREs is specifically recruited to the immediate vicinity of the inclusion membrane, and their accumulation is reduced around inclusions that lack IncA, demonstrating that IncA plays a predominant role in SNARE recruitment. However, interaction with the SNARE machinery is probably not restricted to IncA as at least another inclusion protein shows similarities with SNARE motifs and can interact with SNAREs. We modelled IncA's association with host SNAREs. The analysis of intermolecular contacts showed that the IncA SNARE-like motif can make specific interactions with host SNARE motifs similar to those found in a bona fide SNARE complex. Moreover, point mutations in the central layer of IncA SNARE-like motifs resulted in the loss of binding to host SNAREs. Altogether, our data demonstrate for the first time mimicry of the SNARE motif by a bacterium

    Uncovering the Molecular Machinery of the Human Spindle—An Integration of Wet and Dry Systems Biology

    Get PDF
    The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called “hidden spindle hub”, proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system

    Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Chlamydiae </it>are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization, Inc proteins likely play important roles in the interactions between the microbe and the host. In this paper we sought to identify and analyze, using bioinformatics tools, all putative Inc proteins in published chlamydial genomes, including an environmental species.</p> <p>Results</p> <p>Inc proteins contain at least one bilobal hydrophobic domain made of two transmembrane helices separated by a loop of less than 30 amino acids. Using bioinformatics tools we identified 537 putative Inc proteins across seven chlamydial proteomes. The amino-terminal segment of the putative Inc proteins was recognized as a functional TTS signal in 90% of the <it>C. trachomatis </it>and <it>C. pneumoniae </it>sequences tested, validating the data obtained <it>in silico</it>. We identified a <it>macro </it>domain in several putative Inc proteins, and observed that Inc proteins are enriched in segments predicted to form coiled coils. A surprisingly large proportion of the putative Inc proteins are not constitutively translocated to the inclusion membrane in culture conditions.</p> <p>Conclusions</p> <p>The Inc proteins represent 7 to 10% of each proteome and show a great degree of sequence diversity between species. The abundance of segments with a high probability for coiled coil conformation in Inc proteins support the hypothesis that they interact with host proteins. While the large majority of Inc proteins possess a functional TTS signal, less than half may be constitutively translocated to the inclusion surface in some species. This suggests the novel finding that translocation of Inc proteins may be regulated by as-yet undetermined mechanisms.</p
    corecore