1,049 research outputs found

    A systematic search for massive black hole binaries in SDSS spectroscopic sample

    Full text link
    We present the results of a systematic search for massive black hole binaries in the Sloan Digital Sky Survey spectroscopic database. We focus on bound binaries, under the assumption that one of the black holes is active. In this framework, the broad lines associated to the accreting black hole are expected to show systematic velocity shifts with respect to the narrow lines, which trace the rest-frame of the galaxy. For a sample of 54586 quasars and 3929 galaxies at redshifts 0.1<z<1.5 we brute-force model each spectrum as a mixture of two quasars at two different redshifts. The spectral model is a data-driven dimensionality reduction of the SDSS quasar spectra based on a matrix factorization. We identified 32 objects with peculiar spectra. Nine of them can be interpreted as black hole binaries. This doubles the number of known black hole binary candidates. We also report on the discovery of a new class of extreme double-peaked emitters with exceptionally broad and faint Balmer lines. For all the interesting sources, we present detailed analysis of the spectra, and discuss possible interpretations.Comment: 10 pages, 2 figures, accepted for publication in Ap

    On the cool gaseous haloes of quasars

    Full text link
    We present optical spectroscopy of projected QSO pairs to investigate the MgII and the CIV absorption features imprinted on the spectrum of the background object by the gaseous halo surrounding the foreground QSO. We observed 13 projected pairs in the redshift range 0.7<z<2.2 spanning projected separations between 60 kpc and 120 kpc. In the spectra of the background QSOs, we identify MgII intervening absorption systems associated to the foreground QSOs in 7 out of 10 pairs, and 1 absorption system out of 3 is found for CIV. The distribution of the equivalent width as a function of the impact parameter shows that, unlike the case of normal galaxies, some strong absorption systems (EWr > 1 Ang) are present also beyond a projected radius of ~70 kpc. If we take into account the mass of the galaxies as an additional parameter that influence the extent of the gaseous haloes, the distribution of the absorptions connected to the QSOs is consistent to that of galaxies. In the spectra of the foreground QSOs we do not detect any MgII absorption lines originated by the gas surrounding the QSO itself, but in 2 cases these features are present for CIV. The comparison between the absorption features observed in the transverse direction and those along the line of sight allows us to comment on the distribution of the absorbing gas and on the emission properties of the QSOs. Based on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Programmes 085.B-0210(A) and 086.B-0028(A).Comment: 15 pages, 3 tables, 9 figures. Accepted to be published on MNRA

    Reclassification of the nearest quasar pair candidate: SDSS J15244+3032 - RXS J15244+3032

    Full text link
    We present optical spectroscopy of the nearest quasar pair listed in the 13th edition of the Veron-Cetty & Veron catalogue, i.e. the two quasars SDSS J15244+3032 and RXS J15244+3032 (redshift z~0.27, angular separation ~7 arcsec, and line-of-sight velocity difference ~1900 km/s). This system would be an optimal candidate to investigate the mutual interaction of the host galaxies with ground based optical imaging and spectroscopy. However, new optical data demonstrate that RXS J15244+3032 is indeed a star of spectral type G. This paper includes data gathered with the Asiago 1.82m telescope (Cima Ekar Observatory, Asiago, Italy).Comment: 5 pages, 2 figures, 1 table. Accepted for publication in APS

    A powerful radio-loud quasar at the end of cosmic reionization

    Get PDF
    We present the discovery of the radio-loud quasar PSO J352.4034-15.3373 at z=5.84 pm 0.02. This quasar is the radio brightest source known, by an order of magnitude, at z~6 with a flux density in the range of 8-100 mJy from 3GHz to 230MHz and a radio loudness parameter R>~1000. This source provides an unprecedented opportunity to study powerful jets and radio-mode feedback at the highest redshifts, and presents the first real chance to probe deep into the neutral intergalactic medium by detecting 21 cm absorption at the end of cosmic reionization.Comment: ApJL accepted on May 8, 2018. See the companion paper by Momjian et a

    The optical spectrum of PKS 1222+216 and its black hole mass

    Full text link
    We investigate the optical spectral properties of the blazar PKS 1222+216 during a period of 3 years. While the continuum is highly variable the broad line emission is practically constant. This supports a scenario in which the broad line region is not affected by jet continuum variations. We thus infer the thermal component of the continuum from the line luminosity and we show that it is comparable with the continuum level observed during the phases of minimum optical activity. The mass of the black hole is estimated through the virial method from the FWHM of MgII, Hbeta, and Halpha broad lines and from the thermal continuum luminosity. This yields a consistent black hole mass value of 6x10^8 solar masses.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    The compact, ∼1 kpc host galaxy of a quasar at a redshift of 7.1

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C ii] fine-structure line and the underlying far-infrared (FIR) dust continuum emission in J1120+0641, the most distant quasar currently known (z=7.1z=7.1). We also present observations targeting the CO(2–1), CO(7–6), and [C i] 369 μm lines in the same source obtained at the Very Large Array and Plateau de Bure Interferometer. We find a [C ii] line flux of F[CII]=1.11±0.10{F}_{[{\rm{C}}{\rm{II}}]}=1.11\pm 0.10 Jy km s−1\mathrm{km}\,{{\rm{s}}}^{-1} and a continuum flux density of S227GHz=0.53±0.04{S}_{227\mathrm{GHz}}=0.53\pm 0.04 mJy beam−1, consistent with previous unresolved measurements. No other source is detected in continuum or [C ii] emission in the field covered by ALMA (~ 25''). At the resolution of our ALMA observations (0farcs23, or 1.2 kpc, a factor of ~70 smaller beam area compared to previous measurements), we find that the majority of the emission is very compact: a high fraction (~80%) of the total line and continuum flux is associated with a region 1–1.5 kpc in diameter. The remaining ~20% of the emission is distributed over a larger area with radius lesssim4 kpc. The [C ii] emission does not exhibit ordered motion on kiloparsec scales: applying the virial theorem yields an upper limit on the dynamical mass of the host galaxy of (4.3±0.9)×1010(4.3\pm 0.9)\times {10}^{10} M⊙{M}_{\odot }, only ~20 × higher than the central black hole (BH). The other targeted lines (CO(2–1), CO(7–6), and [C i]) are not detected, but the limits of the line ratios with respect to the [C ii] emission imply that the heating in the quasar host is dominated by star formation, and not by the accreting BH. The star formation rate (SFR) implied by the FIR continuum is 105–340 M⊙ yr−1{M}_{\odot }\,{\mathrm{yr}}^{-1}, with a resulting SFR surface density of ~100–350 M⊙ yr−1{M}_{\odot }\,{\mathrm{yr}}^{-1} kpc−2, well below the value for Eddington-accretion-limited star formation

    Mapping the Lyman-Alpha Emission Around a z~6.6 QSO with MUSE: Extended Emission and a Companion at Close Separation

    Full text link
    We utilize the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) to search for extended Lyman-Alpha emission around the z~6.6 QSO J0305-3150. After carefully subtracting the point-spread-function, we reach a nominal 5-sigma surface brightness limit of SB = 1.9x10−18^{-18} erg/s/cm2^2/arcsec2^2 over a 1 arcsec2^2 aperture, collapsing 5 wavelength slices centered at the expected location of the redshifted Lyman-Alpha emission (i.e. at 9256 Ang.). Current data suggest the presence (5-sigma, accounting for systematics) of a Lyman-Alpha nebula that extends for 9 kpc around the QSO. This emission is displaced and redshifted by 155 km/s with respect to the location of the QSO host galaxy traced by the [CII] emission line. The total luminosity is L = 3.0x1042^{42} erg/s. Our analysis suggests that this emission is unlikely to rise from optically thick clouds illuminated by the ionizing radiation of the QSO. It is more plausible that the Lyman-Alpha emission is due to fluorescence of the highly ionized optically thin gas. This scenario implies a high hydrogen volume density of nH_H ~ 6 cm−3^{-3}. In addition, we detect a Lyman-Alpha emitter (LAE) in the immediate vicinity of the QSO: i.e., with a projected separation of 12.5 kpc and a line-of-sight velocity difference of 560 km/s. The luminosity of the LAE is L = 2.1x1042^{42} erg/s and its inferred star-formation-rate is SFR ~ 1.3 M⊙_\odot/yr. The probability of finding such a close LAE is one order of magnitude above the expectations based on the QSO-galaxy cross-correlation function. This discovery is in agreement with a scenario where dissipative interactions favour the rapid build-up of super-massive black holes at early Cosmic times.Comment: 17 pages, 15 figures. Accepted for publication in Ap

    Mapping the Lyman-Alpha Emission Around a z~6.6 QSO with MUSE: Extended Emission and a Companion at Close Separation

    Get PDF
    We utilize the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) to search for extended Lyman-Alpha emission around the z~6.6 QSO J0305-3150. After carefully subtracting the point-spread-function, we reach a nominal 5-sigma surface brightness limit of SB = 1.9x10−18^{-18} erg/s/cm2^2/arcsec2^2 over a 1 arcsec2^2 aperture, collapsing 5 wavelength slices centered at the expected location of the redshifted Lyman-Alpha emission (i.e. at 9256 Ang.). Current data suggest the presence (5-sigma, accounting for systematics) of a Lyman-Alpha nebula that extends for 9 kpc around the QSO. This emission is displaced and redshifted by 155 km/s with respect to the location of the QSO host galaxy traced by the [CII] emission line. The total luminosity is L = 3.0x1042^{42} erg/s. Our analysis suggests that this emission is unlikely to rise from optically thick clouds illuminated by the ionizing radiation of the QSO. It is more plausible that the Lyman-Alpha emission is due to fluorescence of the highly ionized optically thin gas. This scenario implies a high hydrogen volume density of nH_H ~ 6 cm−3^{-3}. In addition, we detect a Lyman-Alpha emitter (LAE) in the immediate vicinity of the QSO: i.e., with a projected separation of 12.5 kpc and a line-of-sight velocity difference of 560 km/s. The luminosity of the LAE is L = 2.1x1042^{42} erg/s and its inferred star-formation-rate is SFR ~ 1.3 M⊙_\odot/yr. The probability of finding such a close LAE is one order of magnitude above the expectations based on the QSO-galaxy cross-correlation function. This discovery is in agreement with a scenario where dissipative interactions favour the rapid build-up of super-massive black holes at early Cosmic times.Comment: 17 pages, 15 figures. Accepted for publication in Ap

    Ionized Nitrogen at High Redshift

    Get PDF
    We present secure [N II]_(205 μm) detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]_(205 μm) is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]_(205 μm)) = (4.8 ± 0.8) Jy km s^(–1) and (7.4 ± 0.5) Jy km s^(–1), respectively, yielding line luminosities of L([N II]_(205 μm)) = (1.8 ± 0.3) × 10^9 μ^(–1) L_⊙ for APM 08279+5255 and L([N II]_(205 μm)) = (2.8 ± 0.2) × 10(^9) μ^(–1) L_⊙ for MM 18423+5938. Our high-resolution map of the [N II]_(205 μm) and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness (Σ_(FIR)α Σ^N_CO, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 ± 0.2), consistent with a starbursting environment. We measure a [N II]_(205 μm)/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 × 10^(–6) and 5.8 × 10^(–6), respectively. This is in agreement with the decrease of the [N II]_(205 μm)/FIR ratio at high FIR luminosities observed in local galaxies
    • …
    corecore