68 research outputs found

    Therapeutic SERPINs: Improving on Nature

    Get PDF
    Serine proteases drive important physiological processes such as coagulation, fibrinolysis, inflammation and angiogenesis. These proteases are controlled by serine protease inhibitors (SERPINs) that neutralize their activity. Currently, over 1,500 SERPINs are known in nature, but only 37 SERPINs are found in humans. Thirty of these are functional protease inhibitors. The inhibitory potential of SERPINs is in perfect balance with the proteolytic activities of its targets to enable physiological protease activity. Hence, SERPIN deficiency (either qualitative or quantitative) can lead to disease. Several SERPIN resupplementation strategies have been developed to treat SERPIN deficiencies, including concentrates derived from plasma and recombinant SERPINs. SERPINs usually inhibit multiple proteases, but only in their active state. Over the past decades, considerable insights have been acquired in the identification of SERPIN biological functions, their inhibitory mechanisms and specificity determinants. This paves the way for the development of therapeutic SERPINs. Through rational design, the inhibitory properties (selectivity and inhibitory potential) of SERPINs can be reformed and optimized. This review explores the current state of SERPIN engineering with a focus on reactive center loop modifications and backbone stabilization. We will discuss the lessons learned from these recombinant SERPINs and explore novel techniques and strategies that will be essential for the creation and application of the future generation of therapeutic SERPINs

    SERPINs—From Trap to Treatment

    Get PDF
    Excessive enzyme activity often has pathological consequences. This for example is the case in thrombosis and hereditary angioedema, where serine proteases of the coagulation system and kallikrein-kinin system are excessively active. Serine proteases are controlled by SERPINs (serine protease inhibitors). We here describe the basic biochemical mechanisms behind SERPIN activity and identify key determinants that influence their function. We explore the clinical phenotypes of several SERPIN deficiencies and review studies where SERPINs are being used beyond replacement therapy. Excitingly, rare human SERPIN mutations have led us and others to believe that it is possible to refine SERPINs toward desired behavior for the treatment of enzyme-driven pathology

    Virulence Associated Gene 8 of Bordetella pertussis Enhances Contact System Activity by Inhibiting the Regulatory Function of Complement Regulator C1 Inhibitor.

    Get PDF
    Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence

    Blood Clotting and the Pathogenesis of Types I and II Hereditary Angioedema

    Get PDF
    The plasma contact system is the initiator of the intrinsic pathway of coagulation and the main producer of the inflammatory peptide bradykinin. When plasma is exposed to a negatively charged surface the two enzymes factor XII (FXII) and plasma prekallikrein (PK) bind to the surface alongside the co-factor high molecular weight kininogen (HK), where PK is non-covalently bound to. Here, FXII and PK undergo a reciprocal activation feedback loop that leads to full contact system activity in a matter of seconds. Although naturally occurring negatively charged surfaces have shown to be involved in the role of the contact system in thrombosis, such surfaces are elusive in the pathogenesis of bradykinin-driven hereditary angioedema (HAE). In this review, we will explore the molecular mechanisms behind contact system activation, their assembly on the endothelial surface, and their role in the HAE pathophysiology

    Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III

    Get PDF
    Hereditary angioedema type III (HAEIII) is a rare inherited swelling disorder that is associated with point mutations in the gene encoding the plasma protease factor XII (FXII). Here, we demonstrate that HAEIII-associated mutant FXII, derived either from HAEIII patients or recombinantly produced, is defective in mucin-type Thr309-linked glycosylation. Loss of glycosylation led to increased contact-mediated autoactivation of zymogen FXII, resulting in excessive activation of the bradykinin-forming kallikrein-kinin pathway. In contrast, both FXII-driven coagulation and the ability of C1-esterase inhibitor to bind and inhibit activated FXII were not affected by the mutation. Intravital laser-scanning microscopy revealed that, compared with control animals, both F12–/– mice reconstituted with recombinant mutant forms of FXII and humanized HAEIII mouse models with inducible liver-specific expression of Thr309Lys-mutated FXII exhibited increased contact-driven microvascular leakage. An FXII-neutralizing antibody abolished bradykinin generation in HAEIII patient plasma and blunted edema in HAEIII mice. Together, the results of this study characterize the mechanism of HAEIII and establish FXII inhibition as a potential therapeutic strategy to interfere with excessive vascular leakage in HAEIII and potentially alleviate edema due to other causes

    Targeted SERPIN (TaSER): a dual-action antithrombotic agent that targets platelets for SERPIN delivery

    Get PDF
    Background: Occlusive thrombi are not homogeneous in composition. The core of a thrombus is rich in activated platelets and fibrin while the outer shell contains resting platelets. This core is inaccessible to plasma proteins. We produced a fusion protein (targeted SERPIN–TaSER), consisting of a function-blocking V HH against glycoprotein Ibα (GPIbα) and a thrombin-inhibiting serine protease inhibitor (SERPIN; α1-antitrypsin 355AIAR 358) to interfere with platelet-driven thrombin formation. Aim: To evaluate the antithrombotic properties of TaSER. Methods: Besides TaSER, we generated three analogous control variants with either a wild-type antitrypsin subunit, a non-targeting control V HH, or their combination. We investigated TaSER and controls in protease activity assays, (platelet-dependent) thrombin generation assays, and by western blotting. The effects of TaSER on platelet activation and von Willebrand factor (VWF) binding were studied by fluorescence-activated cell sorting, in agglutination studies, and in ATP secretion experiments. We studied the influence of TaSER in whole blood (1) on platelet adhesion on VWF, (2) aggregate formation on collagen, and (3) thrombus formation (after recalcification) on collagen and tissue factor. Results: TaSER binds platelets and inhibits thrombin activity on the platelet surface. It blocks VWF binding and disassembles platelet agglutinates. TaSER delays tissue factor-triggered thrombin generation and ATP secretion in platelet-rich plasma in a targeted manner. In flow studies, TaSER interferes with platelet adhesion and aggregate formation due to GPIbα blockade and limits thrombus formation due to targeted inhibition of platelet-dependent thrombin activity. Conclusion: The synergy between the individual properties of TaSER makes it a highly effective antithrombotic agent with possible clinical implications

    Patterns of C1-Inhibitor/Plasma Serine Protease Complexes in Healthy Humans and in Hereditary Angioedema Patients

    Get PDF
    C1-inhibitor (C1-INH) is an important regulator of the complement, coagulation, fibrinolytic and contact systems. The quantity of protease/C1-INH complexes in the blood is proportional to the level of the in vivo activation of these four cascade-like plasma enzyme systems. Parallel determination of C1-INH-containing activation complexes could be important to understand the regulatory role of C1-INH in diseases such as hereditary angioedema (HAE) due to C1-INH deficiency (C1-INH-HAE). We developed in-house ELISAs to measure the concentration of complexes of C1-INH formed with active proteases: C1r, C1s, MASP-1, MASP-2, plasma kallikrein, factor XIIa, factor XIa, and thrombin, as well as to determine total and functionally active C1-INH. We measured the concentration of the complexes in EDTA plasma from 6 healthy controls, from 5 with type I and 5 with type II C1-INH-HAE patients during symptom-free periods and from five patients during HAE attacks. We also assessed the concentration of these complexes in blood samples taken from one C1-INH-HAE patient during the kinetic follow-up of a HAE attack. The overall pattern of complexed C1-INH was similar in controls and C1-INH-HAE patients. C1-INH formed the highest concentration complexes with C1r and C1s. We observed higher plasma kallikrein/C1-INH complex concentration in both type I and type II C1-INH-HAE, and higher concentration of MASP-1/C1-INH, and MASP-2/C1-INH complexes in type II C1-INH-HAE patients compared to healthy controls and type I patients. Interestingly, none of the C1-INH complex concentrations changed significantly during HAE attacks. During the kinetic follow-up of an HAE attack, the concentration of plasma kallikrein/C1-INH complex was elevated at the onset of the attack. In parallel, C1r, FXIIa and FXIa complexes of C1-INH also tended to be elevated, and the changes in the concentrations of the complexes followed rather rapid kinetics. Our results suggest that the complement classical pathway plays a critical role in the metabolism of C1-INH, however, in C1-INH-HAE, contact system activation is the most significant in this respect. Due to the fast changes in the concentration of complexes, high resolution kinetic follow-up studies are needed to clarify the precise molecular background of C1-INH-HAE pathogenesis

    VhH anti-thrombomodulin clone 1 inhibits TAFI activation and enhances fibrinolysis in human whole blood under flow

    Get PDF
    Background: Thrombomodulin on endothelial cells can form a complex with thrombin. This complex has both anticoagulant properties, by activating protein C, and clot-protective properties, by activating thrombin-activatable fibrinolysis inhibitor (TAFI). Activated TAFI (TAFIa) inhibits plasmin-mediated fibrinolysis. Objectives: TAFIa inhibition is considered a potential antithrombotic strategy. So far, this goal has been pursued by developing compounds that directly inhibit TAFIa. In contrast, we here describe variable domain of heavy-chain-only antibody (VhH) clone 1 that inhibits TAFI activation by targeting human thrombomodulin. Methods: Two llamas (Lama Glama) were immunized, and phage display was used to select VhH anti-thrombomodulin (TM) clone 1. Affinity was determined with surface plasmon resonance and binding to native TM was confirmed with flow cytometry. Clone 1 was functionally assessed by competition, clot lysis, and thrombin generation assays. Last, the effect of clone 1 on tPA-mediated fibrinolysis in human whole blood was investigated in a microfluidic fibrinolysis model. Results: VhH anti-TM clone 1 bound recombinant TM with a binding affinity of 1.7 ± 0.4 nM and showed binding to native TM. Clone 1 competed with thrombin for binding to TM and attenuated TAFI activation in clot lysis assays and protein C activation in thrombin generation experiments. In a microfluidic fibrinolysis model, inhibition of TM with clone 1 fully prevented TAFI activation. Discussion: We have developed VhH anti-TM clone 1, which inhibits TAFI activation and enhances tPA-mediated fibrinolysis under flow. Different from agents that directly target TAFIa, our strategy should preserve direct TAFI activation via thrombin

    Directing HIV-1 for degradation by non-target cells, using bi-specific single-chain llama antibodies

    Get PDF
    While vaccination against HIV-1 has been so far unsuccessful, recently broadly neutralizing antibodies (bNAbs) against HIV-1 envelope glycoprotein were shown to induce long-term suppression in the absence of antiretroviral therapy in patients with antibody-sensitive viral reservoirs. The requirement of neutralizing antibodies indicates that the antibody mediated removal (clearance) of HIV-1 in itself is not efficient enough in these immune compromised patients. Here we present a novel, alternative approach that is independent of a functional immune system to clear HIV-1, by capturing the virus and redirecting it to non-target cells where it is internalized and degraded. We use bispecific antibodies with domains derived from small single chain Llama antibodies (VHHs). These bind with one domain to HIV-1 envelope proteins and with the other domain direct the virus to cells expressing epidermal growth factor receptor (EGFR), a receptor that is ubiquitously expressed in the body. We show that HIV envelope proteins, virus-like particles and HIV-1 viruses (representing HIV-1 subtypes A, B and C) are efficiently recruited to EGFR, internalized and degraded in the lysosomal pathway at low nM concentrations of bispecific VHHs. This directed degradation in non-target cells may provide a clearance platform for the removal of viruses and other unwanted agents from the circulation, including toxins, and may thus provide a novel method for curing
    corecore