347 research outputs found

    Spatial and nonspatial implicit motor learning in Korsakoff’s amnesia: evidence for selective deficits

    Get PDF
    Patients with amnesia have deficits in declarative memory but intact memory for motor and perceptual skills, which suggests that explicit memory and implicit memory are distinct. However, the evidence that implicit motor learning is intact in amnesic patients is contradictory. This study investigated implicit sequence learning in amnesic patients with Korsakoff’s syndrome (N = 20) and matched controls (N = 14), using the classical Serial Reaction Time Task and a newly developed Pattern Learning Task in which the planning and execution of the responses are more spatially demanding. Results showed that implicit motor learning occurred in both groups of participants; however, on the Pattern Learning Task, the percentage of errors did not increase in the Korsakoff group in the random test phase, which is indicative of less implicit learning. Thus, our findings show that the performance of patients with Korsakoff’s syndrome is compromised on an implicit learning task with a strong spatial response component

    Homeopathy – what are the active ingredients? An exploratory study using the UK Medical Research Council's framework for the evaluation of complex interventions

    Get PDF
    BACKGROUND: Research in homeopathy has traditionally addressed itself to defining the effectiveness of homeopathic potencies in comparison to placebo medication. There is now increasing awareness that the homeopathic consultation is in itself a therapeutic intervention working independently or synergistically with the prescribed remedy. Our objective was to identify and evalute potential "active ingredients" of the homeopathic approach as a whole, in a prospective formal case series, which draws on actual consultation data, and is based on the MRC framework for the evaluation of complex interventions. METHODS: Following on from a theoretical review of how homeopathic care might mediate its effects, 18 patients were prospectively recruited to a case series based at Bristol Homeopathic Hospital. Patients, who lived with one of three index conditions, were interviewed before and after a five visit "package of care". All consultations were recorded and transcribed verbatim. Additional data, including generic and condition-specific questionnaires, artwork and "significant other" reports were collected. Textual data was subject to thematic analysis and triangulated with other sources. RESULTS: We judged that around one third of patients had experienced a major improvement in their health over the study period, a third had some improvement and a third had no improvement. Putative active ingredients included the patients' "openness to the mind-body connection", consultational empathy, in-depth enquiry into bodily complaints, disclosure, the remedy matching process and, potentially, the homeopathic remedies themselves. CONCLUSION: This study has has identified, using primary consultation and other data, a range of factors that might account for the effectiveness of homeopathic care. Some of these, such as empathy, are non-specific. Others, such as the remedy matching process, are specific to homeopathy. These findings counsel against the use of placebo-controlled RCT designs in which both arms would potentially be receiving specific active ingredients. Future research in homeopathy should focus on pragmatic trials and seek to confirm or refute the therapeutic role of constructs such as patient "openness", disclosure and homeopathicity

    Abnormal Reorganization of Functional Cortical Small-World Networks in Focal Hand Dystonia

    Get PDF
    We investigated the large-scale functional cortical connectivity network in focal hand dystonia (FHD) patients using graph theoretic measures to assess efficiency. High-resolution EEGs were recorded in 15 FHD patients and 15 healthy volunteers at rest and during a simple sequential finger tapping task. Mutual information (MI) values of wavelet coefficients were estimated to create an association matrix between EEG electrodes, and to produce a series of adjacency matrices or graphs, G, by thresholding with network cost. Efficiency measures of small-world networks were assessed. As a result, we found that FHD patients have economical small-world properties in their brain functional networks in the alpha and beta bands. During a motor task, in the beta band network, FHD patients have decreased efficiency of small-world networks, whereas healthy volunteers increase efficiency. Reduced efficient beta band network in FHD patients during the task was consistently observed in global efficiency, cost-efficiency, and maximum cost-efficiency. This suggests that the beta band functional cortical network of FHD patients is reorganized even during a task that does not induce dystonic symptoms, representing a loss of long-range communication and abnormal functional integration in large-scale brain functional cortical networks. Moreover, negative correlations between efficiency measures and duration of disease were found, indicating that the longer duration of disease, the less efficient the beta band network in FHD patients. In regional efficiency analysis, FHD patients at rest have high regional efficiency at supplementary motor cortex (SMA) compared with healthy volunteers; however, it is diminished during the motor task, possibly reflecting abnormal inhibition in FHD patients. The present study provides the first evidence with graph theory for abnormal reconfiguration of brain functional networks in FHD during motor task

    A Biomedically Enriched Collection of 7000 Human ORF Clones

    Get PDF
    We report the production and availability of over 7000 fully sequence verified plasmid ORF clones representing over 3400 unique human genes. These ORF clones were derived using the human MGC collection as template and were produced in two formats: with and without stop codons. Thus, this collection supports the production of either native protein or proteins with fusion tags added to either or both ends. The template clones used to generate this collection were enriched in three ways. First, gene redundancy was removed. Second, clones were selected to represent the best available GenBank reference sequence. Finally, a literature-based software tool was used to evaluate the list of target genes to ensure that it broadly reflected biomedical research interests. The target gene list was compared with 4000 human diseases and over 8500 biological and chemical MeSH classes in ∼15 Million publications recorded in PubMed at the time of analysis. The outcome of this analysis revealed that relative to the genome and the MGC collection, this collection is enriched for the presence of genes with published associations with a wide range of diseases and biomedical terms without displaying a particular bias towards any single disease or concept. Thus, this collection is likely to be a powerful resource for researchers who wish to study protein function in a set of genes with documented biomedical significance

    Computational and mathematical approaches to societal transitions

    Get PDF
    After an introduction of the theoretical framework and concepts of transition studies, this article gives an overview of how structural change in social systems has been studied from various disciplinary perspectives. This overview first leads to the conclusion that computational and mathematical approaches and their practical form, modeling, up till now, have been almost absent in the research and theorizing of structural change or transitions in social systems. Second, this review of the social science literature suggests numerous theoretical constructs relevant for transition modeling. Relevant concepts include the conceptualization of the micro-to-macro link, the importance of explaining both stability and change, quantitative and qualitative definitions of structural change, the use of dichotomies, synchronic and diachronic reasoning in explaining structural change, definitions of basic patterns of social change, the conceptualization of resistance to change and intentional and normative aspects of social change. This article employs these theoretical concepts to describe and discuss the models presented in this special issue in order to develop an understanding of what exactly entails a computational or mathematical approach to societal transitions

    Don't Fall Off the Adaptation Cliff: When Asymmetrical Fitness Selects for Suboptimal Traits

    Get PDF
    The cliff-edge hypothesis introduces the counterintuitive idea that the trait value associated with the maximum of an asymmetrical fitness function is not necessarily the value that is selected for if the trait shows variability in its phenotypic expression. We develop a model of population dynamics to show that, in such a system, the evolutionary stable strategy depends on both the shape of the fitness function around its maximum and the amount of phenotypic variance. The model provides quantitative predictions of the expected trait value distribution and provides an alternative quantity that should be maximized (“genotype fitness”) instead of the classical fitness function (“phenotype fitness”). We test the model's predictions on three examples: (1) litter size in guinea pigs, (2) sexual selection in damselflies, and (3) the geometry of the human lung. In all three cases, the model's predictions give a closer match to empirical data than traditional optimization theory models. Our model can be extended to most ecological situations, and the evolutionary conditions for its application are expected to be common in nature

    Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition

    Get PDF
    INTRODUCTION Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS). METHODS CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. RESULTS Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. CONCLUSIONS Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system

    Mantle Pb paradoxes : the sulfide solution

    Get PDF
    Author Posting. © Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 152 (2006): 295-308, doi:10.1007/s00410-006-0108-1.There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt ‘wets’ sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: 1). advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus ‘sampling’ Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent ‘de-coupling’ of these systems.Our intemperance should not be blamed on the support we gratefully acknowledge from NSF: EAR- 0125917 to SRH and OCE-0118198 to GAG

    Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes.

    Get PDF
    Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear
    corecore