218 research outputs found

    Modelling of long-term dynamic leaching tests applied to solidified/stabilised waste

    Get PDF
    International audienceThe paper aims at simulating the closed-system dynamic leaching of a cement-based monolith containing lead with the numerical reactive transport code HYTEC in a 3D-cylindrical geometry. The model considers, simultaneously, the chemical evolution of pore water, the progression of mineralogical alteration fronts, and the concomitant release of elements from the S/S waste. In good agreement with the experiment, element releases were found to be mainly controlled by either diffusion (Na, K, and, to a lesser extent, Cl), by surface dissolution (Ca, Si) or by a mixed evolution (Pb, SO4). All of the calculated mineralogical transformations take place in a thin layer beyond the monolith surface. Consequently, modelling of Ca, Si and SO4 releases was quite sensitive to the node size of the simulation grid and was improved by taking into account the increase of porosity and effective diffusion coefficient due to mineral dissolution in the leached layer. In agreement with experimental results, the deepest front corresponds under closed-system conditions to portlandite dissolution and calcium silicate hydrates CSH 1.8 transformation into CSH of lower Ca/Si ratio. A second, distinct and intermediate, front is made by ettringite dissolution. The network of CSH is globally preserved in the leached layer, complete dissolution occurring over a very small thickness only. Finally, hydrotalcite precipitation in the leached layer is expected by modelling due to pH drop

    Kinetics of lime/bentonite pozzolanic reactions at 20 and 50 °C: Batch tests and modeling

    No full text
    International audienceThe effects of duration (1-100 days) and temperature (20 and 50 °C) were assessed from batch tests for Ca-bentonite mixed with 10 wt.% lime. The pozzolanic processes were monitored over time by 29Si NMR (Cement Concr. Res. 42, 2012), TGA-DTA, XRD and chemical analysis. Modeling considered kinetics and thermodynamics of mineralogical transformations and cation exchange. Kinetic laws were dependent on pH and temperature (Arrhenius energy). Lime hydration occurs within hours, modifying the bentonite exchangeable population and increasing the pH. These alkaline conditions initiate the pozzolanic reactions in a second stage. The rate-limiting step is the dissolution kinetics of the bentonite minerals, i.e. a relatively fast and total consumption of cristobalite in parallel to a long-term slower dissolution of montmorillonite. First C-S-H and then C-A-S-H are formed consequently. Temperature speeds up the pozzolanic reaction kinetics by a factor 5 from 20 to 50 °C, corresponding to an apparent activation energy of 40-50 kJ/mol

    3D simulation of the leaching of cement-based materials in order to compare different leaching tests

    No full text
    International audienceLeaching of cement-based materials is a complex process that depends on both the material intrinsic properties and the leaching test. The microstructure and cement-type of the material are typical examples of the former whereas the later consist of solution pH and composition, solution renewal rate and the liquid/solid volume ratio. As most of the tests are not normalized, this leads to a diversity of results in terms of alteration layer thicknesses and leaching kinetics. As a consequence, it is often difficult to compare and transpose experimental data from one experience to the other. 1D reactive transport modeling has proven to be adequate to simulate the coupling between diffusion, dissolution / precipitation and sorption processes that take place during leaching. The aim of this study is to demonstrate the usefulness of 3D reactive transport modeling to accurately simulate the features of the leaching device features, which is essential to compare results obtained by different leaching tests. Such simulations also enable to assess the mutual interaction between samples if the device contains several of them. Additionally, these simulations represent an interesting numerical tool in order to design new or complementary leaching tests

    MSWI bottom ash used as basement at two pilot-scale roads: Comparison of leachate chemistry and reactive transport modeling

    Get PDF
    International audienceThe recycling of municipal solid waste incineration bottom ash as aggregates for road basement requires assessing the long-term evolution of leachate chemistry. The DĂ„va (Sweden) and HĂ©rouville (France) pilot-scale roads were monitored during 6 and 10 years, respectively. Calculated saturation indices were combined to batch test modeling to set a simplified geochemical model of the bottom ash materials. A common reactive transport model was then applied to both sites. At HĂ©rouville, pH and the concentration of most elements quickly drop during the first two years to reach a set of minimum values over 10 years. The decrease is less pronounced at DĂ„va. The evolutions of pH and major element concentrations are fairly well related to the following pH-buffering sequence: portlandite, C-S-H phases or pseudo-wollastonite and, finally, calcite in equilibrium with atmospheric CO2. Al(OH)3, barite, ettringite and monohydrocalcite may also control leachate chemistry. Cu release is correctly modeled by DOM complexation and tenorite equilibrium. Temperature has no significant effect on the modeling of leachate chemistry in the range 5-30 C, except at high pH. Effects at road edges and roadside slopes are important for the release of the less reactive elements and, possibly, for carbonation processes

    Impact of a 70°C temperature on an ordinary Portland cement paste/claystone interface: An in situ experiment

    No full text
    International audienceRadioactive wastes in future underground disposal sites will induce a temperature increase at the interface between the cementitious materials and the host rock. To understand the evolution of Portland cement in this environment, an in situ specific device was developed in the Underground Research Laboratory in Tournemire (France). OPC cement paste was put into contact with clayey rock under water-saturated conditions at 70°C. The initial temperature increase led to ettringite dissolution and siliceous katoite precipitation, without monosulfoaluminate formation. After one year of interaction, partial decalcification and diffuse carbonation (calcite precipitation) was observed over 800 Όm in the cement paste. At the interface, a layer constituted of phillipsite (zeolite), tobermorite (well-crystallised C-S-H), and C-(A)-S-H had formed. Globally, porosity decreased at both sides of the interface. Geochemical modelling supports the experimental results, especially the coexistence of tobermorite and phillipsite at 70°C, minerals never observed before in concrete/clay interface experiments

    Intercomparison of reactive transport models applied to UO2 oxidative dissolution and uranium migration

    Get PDF
    International audienceOxidative dissolution of uranium dioxide (UO2) and the subsequent migration of uranium in a subsurface environment and an underground waste disposal have been simulated with reactive transport models. In these systems, hydrogeological and chemical processes are closely entangledand their interdependency has been analyzed in detail, notably with respect to redox reactions, kinetics of mineralogical evolution and hydrodynamic migration of species of interest. Different codes, where among CASTEM, CHEMTRAP and HYTEC, have been used as an intercomparison and verification exercise. Although the agreement between codes is satisfactory, it is shown that the discretization method of the transport equation (i.e. finite elements (FE) versus mixed-hybrid FE and finite differences) and the sequential coupling scheme may lead to systematic discrepancies

    Reactive transport models of the geochemical interactions at the iron/bentonite interface in laboratory corrosion tests

    Get PDF
    Carbon steel and compacted bentonite have been proposed as candidate materials for the overpack and buffer, respectively, of the multi-barrier system of a geological high-level radioactive waste repository. Carbon steel corrosion may impair bentonite properties. The interactions of corrosion products and bentonite are analyzed with laboratory corrosion tests. Here coupled thermo-hydro-chemical-mechanical (THCM) models of two types of heating and hydration tests performed on compacted bentonite in contact with Fe powder are presented to study the iron-bentonite interactions at representative repository conditions. Tests on small cells (SC) were performed under unsaturated non-isothermal conditions in 25 mm long columns containing 21 mm of bentonite and 4 mm of Fe powder. Tests on medium-size cells (FB) were performed under unsaturated non-isothermal conditions in 99.8 mm long columns containing 86.8 mm of bentonite and 13 mm of Fe powder. Model results for the SC tests showed that magnetite and Fe(OH)2(s) were the main corrosion products which compete for Fe2+ precipitation. Computed corrosion products precipitate mainly in the Fe powder, penetrate a few mm into the bentonite and reproduce the measured iron weight data. Model results of the FB tests showed that magnetite precipitates throughout the Fe powder interface and reproduce the main trends of the corrosion products. Model results of these corrosion tests will be of great relevance for the performance assessment of engineered barriers of radioactive waste repositoriesThe research leading to these results was funded by ENRESA within the Work Package ACED of EURAD (European Joint Programme on Radioactive Waste Management of the European Union, grant agreement nÂș 847593), the Spanish Ministry of Science and Innovation (PID2019-109544RB-I00) and the Galician Regional Government (Grant ED431C2021/54). The comments and corrections of the special editor and the two anonymous reviewers are greatly appreciate

    Modelling of the long-term evolution and performance of engineered barrier system

    Get PDF
    Components of the so-called “multiple-barrier system” from the waste form to the biosphere include a combination of waste containers, engineered barriers, and natural barriers. The Engineered Barrier System (EBS) is crucial for containment and isolation in a radioactive waste disposal system. The number, types, and assigned safety functions of the various engineered barriers depend on the chosen repository concept, the waste form, the radionuclides waste inventory, the selected host rock, and the hydrogeological and geochemical settings of the repository site, among others. EBS properties will evolve with time in response to the thermal, hydraulic, mechanical, radiological, and chemical gradients and interactions between the various constituents of the barriers and the host rock. Therefore, assessing how these properties evolve over long time frames is highly relevant for evaluating the performance of a repository system and safety function evaluations in a safety case. For this purpose, mechanistic numerical models are increasingly used. Such models provide an excellent way for integrating into a coherent framework a scientific understanding of coupled processes and their consequences on different properties of the materials in the EBS. Their development and validation are supported by R&D actions at the European level. For example, within the HORIZON 2020 project BEACON (Bentonite mechanical evolution), the development, test, and validation of numerical models against experimental results have been carried out in order to predict the evolution of the hydromechanical properties of bentonite during the saturation process. Also, in relation to the coupling with mechanics, WP16 MAGIC (chemo Mechanical AGIng of Cementitious materials) of the EURAD Joint Programming Initiative focuses on multi-scale chemo-mechanical modeling of cementitious-based materials that evolve under chemical perturbation. Integration of chemical evolution in models of varying complexity is a major issue tackled in the WP2 ACED (Assessment of Chemical Evolution of ILW and HLW Disposal cells) of EURAD. WP4 DONUT (Development and improvement of numerical methods and tools for modeling coupled processes) of EURAD aims at developing and improving numerical models and tools to integrate more complexity and coupling between processes. The combined progress of those projects at a pan-European level definitively improves the understanding of and the capabilities for assessing the long-term evolution of engineered barrier systems

    Hepatocellular adenoma: what is new in 2008

    Get PDF
    Patients (85%) with hepatocellular adenoma (HCA) are women taking oral contraceptives. They can be divided into four subgroups according to their genotype/phenotype features. (1) Hepatocyte nuclear factor 1α (HNF1α) biallelic somatic mutations are observed in 35% of the HCA cases. It occurs in almost all cases in women. HNF1α-mutated HCA are most of the time, highly steatotic, with a lack of expression of liver fatty acid binding protein (LFABP) in immunohistochemistry analyses. Adenomatosis is frequently detected in this context. An HNF1α germline mutation is observed in less than 5% of HCA cases and can be associated with MODY 3 diabetes. (2) An activating ÎČ-catenin mutation was found in 10% of HCA. These ÎČ-catenin activated HCAs are observed in men and women, and specific risk factors, such as male hormone administration or glycogenosis, are associated with their development. Immunohistochemistry studies show that these HCAs overexpress ÎČ-catenin (nuclear and cytoplasmic) and glutamine synthetase. This group of tumours has a higher risk of malignant transformation into hepatocellular carcinoma. (3) Inflammatory HCAs are observed in 40% of the cases, and they are most frequent in women but are also found in men. Lesions are characterised by inflammatory infiltrates, dystrophic arteries, sinusoidal dilatation and ductular reaction. They express serum amyloid A and C-reactive protein. In this group, GGT is frequently elevated, with a biological inflammatory syndrome present. Also, there are more overweight patients in this group. An additional 10% of inflammatory HCAs express ÎČ-catenin, and are also at risk of malignant transformation. (4) Currently, less than 10% of HCAs are unclassified. It is hoped that in the near future it will be possible with clinical, biological and imaging data to predict in which of the 2 major groups (HNF1α-mutated HCA and inflammatory HCA) the patient belongs and to propose better guidelines in terms of surveillance and treatment
    • 

    corecore