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Abstract 
The paper aims at simulating the dynamic leaching of a cement-based monolith containing lead with the 
numerical reactive transport code HYTEC in a 3D-cylindrical geometry. The model considers, 
simultaneously, the chemical evolution of pore water, the progression of mineralogical alteration fronts, 
and the concomitant release of elements from the S/S waste. In good agreement with experiment, element 
releases were found to be mainly controlled by either diffusion (Na, K, and, to a lesser extent, Cl), by 
surface dissolution (Ca, Si) or by a mixed evolution (Pb, SO4). All the calculated mineralogical 
transformations take place in a thin layer beyond the monolith surface. Consequently, modelling of Ca, Si 
and SO4 releases was quite sensitive to the node size of the simulation grid and was improved by taking 
into account the increase of porosity and effective diffusion coefficient due to mineral dissolution in the 
leached layer.  In agreement with experimental results, the deepest front corresponds to portlandite 
dissolution and CSH 1.7 transformation into CSH of lower Ca/Si ratio. A second, distinct and 
intermediate, front is made by ettringite dissolution. The network of CSH is globally preserved in the 
leached layer, complete dissolution occurring over a very small thickness only. Finally, hydrotalcite 
precipitation in the leached layer is expected by modelling due to pH drop. 
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1. Context and objectives 

Cement-based materials are commonly used for the solidification and stabilisation of toxic metal waste 
(S/S waste) since they have good physical as well as chemical containment properties. As water is the 
main environmental pollution vector, their short and long term behaviours in the scope of disposal and 
recycling scenarios are evaluated by extensive leaching tests. Batch leaching experiments, performed over 
short durations on crushed materials, are a simple tests useful for determining the intrinsic properties of 
the waste with respect to one or several controlled parameters. Dynamic leaching tests, made on 
monolithic samples, are more specifically used to determine the long-term waste evolution and pollutant 
release under accelerated alteration processes. Coupling between diffusion, dissolution/precipitation and 
sorption processes has been clearly identified during such leaching of cement-based waste (Atkinson and 
Nickerson, 1988; van der Sloot, 1996; Tiruta-Barna et al., 2004), thus requiring reactive transport 
modelling. 
 
Beyond the quantification of release rates, modelling is of primary importance for the understanding of 
long term release mechanisms but also for the extrapolation of laboratory results to site conditions 
characterised by lower solution/solid ratios, site specific geometry, cyclic infiltration, etc. (Baranger et al., 
2002; Tiruta-Barna et al., 2004). Considerable progress has been made in the field of reactive transport 
models and computer codes which offer the possibility of simulating geochemically complex systems in a 
hydrodynamic context (van der Lee and De Windt, 2001). However, to our knowledge, there are only a 
very few models of S/S dynamic leaching currently available in the literature. Halim et al. (2005) 
developed a comprehensive geochemical model of S/S waste batch tests using the PHREEQC numerical 
code, but for crushed materials without considering diffusion. Park and Batchelor (2002), Garrabrants et 
al. (2003) and Tiruta-Barna et al. (2005) addressed the modelling of dynamic leaching tests on monolithic 
cement-based waste with their own numerical reactive transport model, in 1D coordinate and without 
explicitly simulating the mineralogical fronts in the monolith. Islam et al. (2004b) developed an analytical 
two-front leach model for cement-stabilised heavy metal waste in the simplified case of spherical 
particles. 
 
The work presented in this article attempts to address some of the limitations of these previous studies, 
simulating the dynamic leaching of a cement-based monolith containing lead with the numerical reactive 
transport code HYTEC in a 3D-cylindrical geometry. The model considers, simultaneously, the chemical 
evolution of pore water, the mineralogical alteration fronts induced by the sequential dissolution of the 
cement hydration products, and the concomitant release of elements from the S/S waste. In addition, 
HYTEC takes into account the increase of porosity and effective diffusion coefficient in the leached layers 
of the monolith. This important feedback effect was generally not considered in the above mentioned 
studies. Special attention is also given to the sensitivity of the calculated results with respect to the 
refinement of the grid. The initial state of the S/S monolith is modelled on the basis of mineralogical 
analyses and two standardised batch tests (maximum mobile fraction and acid neutralisation capacity). 
 
 

2. Materials and model features 

2.1 Material and experiments 

The porous reference material was obtained by solidification of 1% lead by weight, introduced as a 
chloride salt, with a mixture of ¾ siliceous sand and ¼ Portland cement CEM-I by weight, a common 
industrial process for hazardous waste stabilisation. There was no addition of calcium carbonate. The sand 
was a mined material consisting of reactive amorphous silica with some cristobalite, opal and quartz. The 
water/cement ratio was slightly below 0.6. These components were cold mixed and cured at room 
temperature during 28 days. Calcium silicate hydrates (CSH), portlandite and sulfo-aluminates constitute 
the main cement solid phases. The S/S waste was dry cut in small cubic monoliths (4 x 4 x 4 cm3). The 
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mean total porosity was about 15% according to Hg porosimetry measurement (75% of the total porosity 
being related to pore diameters ≤ 1 µm). 
 
In a first stage, two batch leaching tests were performed on finely crushed materials (diameter ≤ 1 mm) in 
an airtight device to avoid carbonation with continuous stirring and under constant temperature (20°C). 
The data obtained during an acid neutralisation capacity test (ANC) was used to determine lead solubility 
as a function of pH. The ANC experimental method consists of contacting the crushed material with a 
leachant volume at a constant pH and liquid/solid ratio (L/S = 10). Nitric acid and sodium hydroxide were 
used in order to cover a wide pH range (from 4 to 13). A 48 h liquid/solid contact time was chosen; 
previous studies have shown this to be sufficient to attain steady-state. In a maximum mobile fraction 
(MMF) test, the crushed waste was submitted to a sequence of successive leaching in batch corresponding 
to cumulative L/S ratios of 10 and 50. Each step took 24 hours under agitation. Demineralised water was 
used as leachant. The data of this second batch test were essential to characterise the initial chemistry of 
the waste pore fluids. 
 
Unlike batch tests, dynamic leaching monolithic tests (DLMT) used monolithic samples, the experiments 
being performed over a period of several months to estimate the long-term behaviour of S/S waste. The 
experimental set-up consisted of a water reactor in which the cubic waste was completely immersed. The 
leachant was renewed at a constant flow rate of 250 ml/h. Closed-system conditions prevented, or at least 
minimised, CO2 uptake. The dynamic leaching test was made at constant temperature (18°C). The eluate 
was sampled at given times (at 24, 48, 72 hours then each 7 days during two months) for chemical 
analysis in order to follow the release of elements from the cubic waste. A blank run without S/S waste 
was realised in a first stage. Results from an experimental blank, performed without S/S waste, showed no 
significant contamination with the exception of silica, and to a lesser extent, sodium concentrations 
resulting from the borosilicate glass of the extracting device. The leachate pH was directly measured in the 
reactor vessel. The evolution of structural features and of mineral phases in the S/S samples after the 
leaching test was monitored by scanning electron microscope (SEM). 
 
2.2 Model features and thermodynamic data 

The reactive transport code HYTEC (van der Lee et al., 2003) was used to simulate the dynamic leaching 
tests taking into account diffusive transport of solutes and chemical reactions (aqueous chemistry, 
dissolution/precipitation and sorption. In HYTEC, diffusion is coupled to chemistry according to the 
following equation: 
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where ci and ic are the mobile and immobile concentration of a species per unit volume of solution 
respectively, ω is the porosity and De is the effective diffusion coefficient. The fixed or solid fraction is 
evaluated by the chemical calculations, whereas the aqueous fraction is a function of the transport 
processes. Chemistry and transport are coupled through a sequential iterative algorithm. In addition, the 
HYTEC code is strongly coupled, e.g. the effective diffusion coefficients change when mineral 
precipitation or dissolution modifies the local porosity. Thus, HYTEC allows accounting for clogging by 
carbonation, or to the contrary, for porosity increase by leaching of calcium hydroxide. Several porosity-
diffusion relations are found in the literature, some being specific to cements and concretes (Bentz and 
Garboczi, 1992). A modified version of the Archie's law, which is implemented in HYTEC, was used in a 
first attempt at modelling the feedback of chemistry on mass transport: 
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The parameter ωc is a critical porosity threshold under which diffusion stops and m is the empirical Archie 
coefficient ranging from 1.3 for unconsolidated sand to 2.2 for consolidated rocks. A zero porosity 
threshold and an Archie coefficient of 2 were used in this study. 
 
The modelling of the closed-system DLMT set-up was made according to the generic configuration 
represented in Fig. 1: a monolithic waste immersed in a reactor, a permanent leachant renewal at a given 
rate, a fixed temperature, and a homogenisation of the reactor solution. Zero-flux boundary-conditions 
were defined at the lateral sides of the reactor, i.e. not at the S/S waste limits. The leachant chemistry 
corresponded to a pure water solution (pH 7, no gas neither solute). To reduce computation time, a 
cylindrical geometry was used instead of a complete 3D-geometry (Fig. 1). At first approximation, the 
CPU time increases as N2 in 3D-cylindrical geometry but as N3 in 3D-cubic geometry (N being the 
number of grid nodes). The gain is therefore substantial and allows for a thiner discretization of the grid, 
i.e. a reduction of the node sizes, which was found to be more critical than geometry for modelling the 
waste evolution as discussed in section 4.2. Care was taken to minimize errors linked to the cylindrical 
geometry: i) the total mass of waste was unchanged, and ii) height and radius were chosen in order to 
minimise surface discrepancy between the cylinder (total surface = 88.5 cm3) and the cubic waste (total 
surface = 96 cm3). Furthermore, unlike 1D grid approximation, specific alterations occurring at the 
monolith edges are also, albeit less intensively, simulated in cylindrical geometry (see Fig. 1). However, 
the 3D-cylindrical approximation does not hold for advanced stages of the monolith degradation. In this 
study, the cubic monolith did not show any pronounced edge alterations after the dynamic leaching tests. 
 
The chemical reactions were calculated assuming local thermodynamic equilibrium and using the B-dot 
activity model for ionic strength correction. The MINTEQ thermodynamic database (Allison et al., 1991), 
well suited for heavy metal chemistry, was selected and enriched with additional data.  Table 1 provides 
details of the minerals selected for the present study. Calcium and silicate hydrate (CSH) is a generic term 
that includes a wide variety of poorly crystallised phases of continuously variable Ca/Si ratio. To simulate 
the degradation of the cement phases, three CSH species of increasing Ca/Si ratio were considered 
according to the experimental results obtained by Stronach and Glasser (1997). Two calcium aluminates, 
ettringite and a Friedel's salt, were also introduced in the calculations. Sodium and calcium sorption on 
CSH phases was also considered in an attempt at better simulating the long-term release of sodium. The 
corresponding surface complexation data are detailed in De Windt et al. (2004). 
 
Several minerals observed in laboratory tests or field conditions were considered as potential candidates to 
control lead solubility in the modelling: the sulfate, anglesite; hydroxy-chlorides, blixite and laurionite; 
oxides, litharge and its precursor, a poorly crystalline hydroxide; and finally carbonates, hydrocerusite and 
cerusite; the later being relevant in case of open condition only. The formation of Pb(OH)2 in a pure 
hydroxylated form, which is present in both the MINTEQ and HATCHES  (Hatches, 1991) databases, has 
not been characterised in the literature. It should be considered as a simplified formulation of more 
complex hydrous phases (Antenucci et al., 2004; Baltpurvins et al., 1996). A fitting procedure of the ANC 
results led to a formation constant (logK) of -11, close to the HATCHES data of -11.9 (25°C, basis 
components of Table 1). 
 
3. Modelling of pore water and lead solubility 

3.1  Pore water chemistry of the S/S waste  

The chemistry of S/S waste pore fluids was difficult to analyse by direct means due to very low pore sizes 
and mechanical stiffness of the material, hence it was indirectly determined from MMF test modelling and 
mineralogical data. Pore fluids are assumed to be in thermodynamic equilibrium with the cement solid 
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phases (Reardon, 1992). A local equilibrium approach was also considered for modelling the MMF tests 
in a first approximation. The kinetics of mineral dissolution is indeed fast in such tests due to high reactive 
surfaces of the crushed material, although the standardised duration of 24 hours was probably not 
sufficient as to reach a complete equilibrium state (Halim et al., 2005). Sodium ions were assumed to be 
both dissolved in pore fluids and sorbed on CSH surfaces. Potassium ions were only introduced in pore 
fluids since the same authors did not notice any significant sorbed fraction. The pH was calculated such as 
to maintain the electroneutrality of the solution which depends itself on the dissolved contents in alkaline 
ions (present as NaOH and KOH in pore fluids) and portlandite equilibrium. In our model, this last 
mineral controls the calcium concentration in pore water. Dissolved silica is only controlled by CSH 1.7 
whereas sulfate and aluminium are in equilibrium with ettringinte. According to literature, but also to the 
leaching results, chlorides were supposed to be present in pore water as well as in solid phases, most 
probably a Friedel's salt (Glasser et al, 1999; Bothe and Brown, 2004). 
 
Figure 2 depicts the evolution of aqueous concentrations and pH during the two sequential leaching steps 
of the MMF test. The calculated total aqueous concentrations of K and Na were set identical to the 
experimental concentrations at the outlet of the first leach step, the fixed fraction of sodium being almost 
zero at this stage. As leaching progresses, the agreement between measured and calculated results is still 
fairly good for Na and, to a lesser extent, for K. Calcium concentrations and pH are accurately estimated 
for both leaching steps. They are controlled by portlandite dissolution in the batch solution. The calculated 
silica concentration is significantly lower than the measured concentrations in the first leach step. Silica 
contents are not commonly provided in literature devoted to similar tests, essentially because of potential 
artifacts induced by glass materials. However, Islam et al. (2004a) report leachate saturated with respect to 
amorphous silica and, therefore, with respect to CSH. The dissolution of unreacted silica during cement 
hydration could be a possible explanation. The calculated silica aqueous concentration of the second leach 
step is in better agreement with the experimental data. 
 
The modelled sulfate concentration, which is controlled by ettringite, is in good agreement with 
experimental results for the first leach step but less so for the second one. The calculated sulfate 
concentration was found to be quite sensitive to the aluminium concentration in a pure equilibrium 
approach. A pure conservative assumption turns out to be incorrect for chlorides demonstrating that, in 
addition to pore water content, a secondary mineral source has to be taken into account. However, it was 
not possible to accurately quantify the initial dissolved and solid fractions of chloride from the MMF 
results only. From a thermodynamical point of view, the Friedel's salt is totally dissolved at the first leach 
step yielding an aqueous content higher than the experimental one. Accordingly, in the second leach step, 
the calculated value resulting from a simple dilution effect is lower the measured data. Provided that the 
Friedel's salt assumption is relevant, the chloride concentration seems to be kinetically controlled. 
 
Although trace content in oxide and hydroxide are found in cement-based materials, the bulk of lead is 
incorporated in the matrix of the CSH phases (Andac and Glasser, 1999; Badreddine et al., 2004). 
Whether lead fixation in such hydrated and low ordered solid phases proceeds by substitution of Ca2+ ions, 
or by sorption on the CSH skeleton, is still debated. Since CSH was modelled by using a solid solution 
approach in the present study, the same approach was adopted for modelling lead solubility. A substitution 
degree of 0.01 and 0.05 mole fraction was examined in turn, by assuming in a first approximation that the 
formation constants of CSH given in Table 1 were still suitable. Whatever the substitution degree, it 
appeared that lead solubility and release were better modelled by taking into account a solubility control 
by precipitation of secondary phases, such as lead hydroxide (and blixite in the ANC tests). 
 
The modelled pore water chemistry of the S/S waste, which is reported in Table 2, was estimated from the 
MMF results and mineralogy. Sodium, potassium and sulfates contents in cement pore water were 
calculated by taking into account the liquid/solid ratio of the first leach step and the porosity of the S/S 
waste. Sodium ions were again assumed to be both dissolved in pore fluids and sorbed on CSH surfaces 
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(PW-B). The PW-A case, without sorption, is given for comparison. The calculated fixed fraction is 
relatively important, around 45%, but within the range of values measured by Park and Batchelor (1999) 
on Portland cement pastes. The pH of pore water PW-B is thus lower than PW-A since a fraction of the 
total sodium inventory is fixed on CSH. Calcium is still controlled by portlandite, and the higher the pH, 
the lower its concentration. CSH1.7 and ettringite, which controlled Si and Al contents respectively, are in 
equilibrium with the pore solution. Calculation indicated that PW-A solution was close to equilibrium 
with Friedel's salt solid and PW-B slightly undersaturated. Again, it was difficult to accurately 
discriminate between the dissolved and solid fractions. Lead was controlled by both the dissolved, 
Pb(OH)3

-, and the Pb(OH)2(s) solid disregarding sorption processes. The former aqueous complex 
explains the increase of lead concentration with pH, comparing PW-A and PW-B pore waters of Table 2. 
  
3.2 Lead solubility versus pH 

Lead solubility is plotted against pH in Fig. 3. The data comes from the ANC test as well as from a similar 
investigation carried out by Sanchez et al (2002). These results are not essential for estimating the initial 
pore water chemistry but rather for modelling the release of lead during dynamic leaching tests 
characterised by a broader range of pH. The amphoteric behaviour of lead accounts for the solubility 
minimum found between pH 8 and 10 combined with sharp solubility increases in both acidic and alkaline 
conditions. Taking into account the logarithmic scale, modelling agrees relatively well with the whole 
experimental data set and correctly simulates the amphoteric profile. The strongest discrepancy occurs at 
low concentrations where lead solubility is sensitive to coprecipitation processes, which were disregarded 
in the present modelling by simplification. Modelling indicates that aqueous hydroxide complexes, 
Pb(OH)2 and Pb(OH)3

-, are the main aqueous species under the alkaline conditions encountered in cement-
based waste. Beside potential sorption processes not considered here, lead solubility is controlled by 
hydroxides at alkaline pH, by blixite in the pH range 6 to 10, and by anglesite in the acidic domain. At the 
lowest pH, lead concentration is not solubility controlled but rather limited by the total Pb content of the 
waste; which explains the flat curves below pH 4 in Fig. 3. These theoretical results are supported by 
experimental investigations (Baltpurvins et al., 1996; Edwards et al, 1992; Sanchez et al., 2002). 
 
4. Modelling of the long term leaching tests 

4.1 Diffusion, solubility and surface alteration 

The release of elements by cement-based materials is a combination of two extreme behaviours: diffusion-
controlled and solubility-controlled processes. The concentration gradient between the pore fluids and the 
leachant leads to the diffusion of chemical species out of the waste. The concentration gradient is 
progressively reduced as species migrate, which gives the well-known root-square time dependency of 
diffusion profiles. Diffusion takes place first in the outer zones of the monolith and gradually reaches the 
core of the samples. The S/S waste material behaves like a diffusion barrier itself. Another noteworthy 
point is that diffusion can lead to the total depletion of a given element in the case of strictly conservative 
elements whose unique source is pore water. Their flux eventually tends to zero, i.e. cumulative mass 
profile tends to a flat plateau. On the contrary, diffusion of elements controlled by mineral-source 
dissolution leads to an ever increasing cumulative release up to full depletion. Solubility-controlled release 
is usually coupled to changes in pore water chemistry. 
 
Since there was no direct measurement of effective diffusion coefficients, De, an alternative was to fit by 
modelling the release profiles of sodium which can be considered as a relevant tracer for that purpose (Tits 
et al., 2003). The diffusion coefficient of Na was then assigned to all the other elements in a first 
approximation. Fig. 4 reports a sensitivity analysis on De ranging from 3x10-13 to 3x10-10 m2/s The release 
of sodium is clearly too fast with the largest value and too slow with the smallest one. The best fit was 
obtained with the intermediate value, 3x10-12 m2/s, by considering both the instantaneous flux and the 
cumulative mass of released sodium. This figure is within the range of values published in the literature 
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for the same class of materials (0.5-   2x10-12 m2/s in MacCarter et al. (2000), 3x10-12 m2/s in Tiruta-Barna 
et al. (2005). The simulation of the long-term release of Na, i.e. beyond 40 days here, was improved while 
considering Na sorption. Diffusion of Na ions leads to a decrease of pore water concentrations and, 
consequently, to an almost proportional desorption of Na ions fixed on CSH phases representing a weak 
long-term source. About 85% of the total Na amount is eventually leached after 2 months. 
 
The monolith surface represents a singular zone with respect to solubility-controlled processes. These 
zones of direct contact with the leaching solution are subjected to active dissolution mechanisms. The 
reactive transport model can account for such processes, but in practise they are not always very accurate, 
owing to grid limitations. For example, in the local equilibrium approach, CSH dissolution is prevented as 
long as portlandite is present in a node of the grid: therefore, the greater the node size, the later the 
beginning of CSH dissolution. Interpretating the experimental silica cumulative profiles in terms of 
alteration depth leads to thicknesses close to 0.3 mm after 62 days for the present 250 ml/h rate. This 
requires node sizes lower than 0.3 mm. Table 3 reports the sensitivity of the calculated cumulative 
releases with respect to the refinement of the calculation grid. The node size ranges from 2.5 to 0.15 mm. 
A first glance at Table 3 clearly shows two types of elements. The releases of Na and K, which are mainly 
diffusion-driven, are independent of the grid refinement. The releases of Ca and Si, which are globally 
controlled by surface leaching, are very sensitive to the node size. Furthermore, as expected, the lower the 
node size, the better the quality of the modelling. Cl, Pb and SO4, which are both diffusion and solubility 
controlled, exhibit an intermediate behaviour. Another interesting aspect of Table 3 is the importance of 
considering porosity effects on diffusive transfers. Indeed, as discussed in section 4.3, there is a specific 
dissolution of portlandite and ettringite compared to the CSH network of the cement matrix. Such a 
hydrolysis pattern leads to an opening of the poral space and, consequently, to an increase of diffusion 
coefficients. When this process is taken into account in the calculations, the modelling results become a 
step closer to the experimental data for those elements which are surface sensitive (Ca, Si and SO4). 
Finally, it is worth mentioning that a kinetics approach can be physically more justified than a 
thermodynamic dissolution depending on the leachate chemistry. This is not the case in the present study 
since the thermodynamically calculated results are globally always below the experimental ones. 
 
4.2 Element release in the closed-system DLMT 

All the calculations presented in this section, and the next one, have been performed with a node size of 
0.15 mm and a variable porosity. 
 
Figure 5 reports pH data in the leachate over two months as well as pH profiles within the monolith and 
the reactor after two months. Globally, the modelling is in fair agreement with experiment. During the first 
days, diffusion of the alkaline plume (Na-K-OH) and portlandite dissolution keeps pH at a value of 11 in 
the reactor. Then, the pH progressively drops by one unit. This steady-state comes from the balance 
between portlandite dissolution and the injection of pure water in the reactor vessel. After 1 month, the 
calculations are greater than the measured pH values. CO2 uptake experimental artifact could explain both 
the spread of data and the pH drop at the end of the dynamic leaching test. Within the monolith, the 
diffusion of the alkaline Na-K-OH plume leads to concentric profiles of pH values decreasing from the 
periphery to the core of the monolith. Portlandite buffers pH around 12.4 on the long term. The pH in the 
thin leached surface layer, free of portlandite, is about 11. 
 
Figure 6 shows the cumulative mass of K, Ca, Pb, Si, Cl and SO4 for the closed-system DLMT. There is a 
good overall agreement between modelling and experimental data notwithstanding the contrasted 
chemistry and concentration range of these elements. Potassium follows an evolution similar to the 
sodium one since both are alkaline ions mainly present in the pore water. Calcium flux indicates a long-
term release controlled by dissolution, in particular surface alteration processes of portlandite and CSH 
1.7, as discussed above. There is a diffusive contribution in the modelling curve, and the experimental 
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data, which is not simulated by the fitted approximation.  The modelling/experiment agreement of lead 
release is fully satisfactory given the chemical complexity of this element. A relatively good correlation 
between Ca and Pb release profiles can be noted in instantaneous release flux, not shown here. This is 
consistent with the observation that lead is mostly present in CSH phases. On the other hand, the ratio of 
lead and calcium molal fluxes (~0.001) is well below the CSH molal fraction (~0.05). Lead solubility is 
thus probably controlled by a secondary phase precipitation as considered in the present modelling. The 
decrease of Pb release after a few days corresponds to a decrease in pH. About 0.5% of total lead content 
is eventually leached. 
 
Modelling shows that silica release is essentially related to surface alteration of the monolith, although the 
actual agreement with experiment is poor. A technical reason is still related to grid limitation. CSH 1.7 
starts to dissolve only when portlandite has been completely dissolved in a node. However, this 
dissolution yields a release in calcium but not in silica since CSH 1.1 phases replace CSH 1.7 ones as 
shown in the following section. This is only a later stage that CSH 1.1 dissolution occurs, inducing a more 
pronounced release of silica. On the other hand, the factor ten discrepancy existing between modelling and 
experimental results is similar to the factor obtained in the modelling of MMF tests, indicating an 
additional reaction not simulated here or an experimental artifact. Chloride release results both from the 
diffusion of the initial pore water content, which explains most of the early release, and the dissolution of 
Friedel's salt within the monolith on the long term. Sulfate essentially behaves like calcium, i.e. its release 
is controlled by the dissolution of a solid phase (ettringite) at the monolith surface. 
 
4.3 Mineralogical evolutions 

All the calculated mineralogical transformations take place at the periphery of the monolith, i.e. at the 
waste/leachate interface. Dissolution of portlandite and ettringite as well as a transformation of CSH 1.7 to 
CSH of lower C/S ratio (CSH 1.1, but not CSH 0.8 in our case) constitute the main alteration processes, as 
shown in Figure 7. Portlandite is completely leached over a thickness of 1.75 mm after 2 months. The 
front of CSH 1.7 alteration closely follows the front of portlandite dissolution. Ettringite dissolution forms 
a second, distinct and intermediate, front at 0.75 mm. The CSH network is globally preserved in the 
leached area. CSH 1.1 phases are only dissolved over a thickness of 0.15 mm after 2 months. Figure 8 
presents complementary mineralogical 2D-profiles. The dissolution front of Friedel's salt also proceeds 
from the surface to the inner space of the monolith, but it progresses more quickly than portlandite and 
ettringite dissolution fronts. If magnesium is introduced in the monolith, either as small amounts of 
magnesium hydroxide or hydrotalcite, the (re)precipitation of hydrotalcite is systematically calculated at 
the surface of the monolith where pH drops. 
 
SEM observations carried out after the dynamic leaching test showed that the overall Ca/Si of the CSH 
phases at the monolith surface decreased as the enhanced alteration progressed. Portlandite and ettringite 
dissolution, CSH evolution to lower Ca/Si ratio, are pointed out by several authors for experimental 
investigations similar to the present DLMT test (Faucon et al., 1996; Harris et al., 2002; Islam et al., 
2004a). The splitting between portlandite and ettringite dissolution fronts is reported by Islam et al. 
(2004a), the resistance of the CSH network to leaching by Faucon et al. (1996) and Harris et al. (2002). 
Precipitation of hydrotalcite at the monolith surface was observed by Faucon et al. (1996). 
 
5. Conclusions 

Modelling the initial state of the S/S monolithic waste requires a preliminary characterisation by 
mineralogical analyses and batch leaching tests. A local equilibrium approach seems to be adequate in a 
first approximation. Modelling of dynamic leaching tests needs for a reactive transport model. The present 
model considers, simultaneously, the chemical evolution of pore water, the mineralogical alteration fronts 
induced by the sequential dissolution of the cement hydration products, and the concomitant release of 
elements from the S/S waste. Globally, the simulated and experimental results are in good agreement. 
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Element release mechanisms appear to be either mainly controlled by diffusion (Na, K, and, to a lesser 
extent, Cl), by surface dissolution (Ca, Si) or by a mixed evolution (Pb, SO4). All the calculated 
mineralogical transformations take place in a thin layer beyond the monolith surface. The monolith 
surface thus represents a singular zone with respect to solubility-controlled processes and, consequently, 
the releases of Ca, Si and SO4 are quite sensitive to the node size of the simulation grid. The smaller the 
grid size, the better the agreement with experimental data. Modelling is further improved when the effect 
of mineral dissolution on porosity and effective diffusion coefficient is taken into account, as physically 
expected. In agreement with experimental literature, a front of CSH 1.7 alteration closely follows the front 
of portlandite dissolution. A second, distinct and intermediate, front is made by ettringite dissolution. A 
network of CSH is globally preserved in the leached layer. Precipitation of hydrotalcite is systematically 
calculated at the surface of the monolith. Further studies are now in progress, to both simulate the open 
condition DLMT (sensitive to carbonation and clogging processes), and to extrapolate the reactive 
transport model to in situ disposal conditions. 
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Table 1  
Reactions and equilibrium constants for minerals used in the calculations.  
 
Mineral Reaction LogK (25 

°C) 
Ref. 

Brucite  Mg2+ + 2 H2O → Mg(OH)2 + 2 H+ -16.8 [a] 

Calcite Ca2+ + CO3
2- → CaCO3 8.5 [a] 

CSH 0.8 0.8 Ca2+ + H4SiO4 - 0.4 H2O → CSH 0.8 + 1.6 H+ -11.1 [b] 

CSH 1.1 1.1 Ca2+ + H4SiO4 + 0.2 H2O → CSH 1.1 + 2.2 H+ -16.7 [b] 

CSH 1.8 1.8 Ca2+ + H4SiO4 + 1.6 H2O → CSH 1.7 + 3.6 H+ -32.6 [b] 

Ettringite 2 Al3+ + 6 Ca2+ + 3 SO4
2- + 38  H2O → 

Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ 
-56.9 [c] 

Friedel's salt 4 Ca2+ + 2 Al3+ + 2 Cl- + 16 H2O → Ca4Al2Cl2(OH)12:4H2O + 
12 H+ 

-73.0 [d] 

Gibbsite Al3++ 3 H2O→ Al(OH)3 + 3 H+ -8.8 [a] 

Gypsum Ca2+ + SO4
2- + 2 H2O → CaSO4:2H2O 4.9 [a] 

Hydrotalcite 2 Al3+ + 4 Mg2+ + 10 H2O→ Mg4Al2O4(OH)6 + 14 H+ -73.8 [e] 

Portlandite Ca2+ + 2 H2O→ Ca(OH)2 + 2 H+ -22.7 [a] 

    

Anglesite Pb2+ + SO4
2- → PbSO4 7.8 [a] 

Cerussite Pb2+ + CO3
2- → PbCO3 13.1 [a] 

Hydrocerussite 3 Pb2+ + 2 CO3
2- + 2 H2O → Pb3(CO3)2(OH)2 + 2 H+ 17.5 [a] 

Laurionite  Pb2+ + Cl- + H2O → PbClOH + H+ -0.6 [a] 

Litharge Pb2+ + H2O → PbO2 + 2 H+ -12.7 [a] 

Pb(OH)2 Pb2+ + 2 H2O → Pb(OH)2 + 2 H+ -11.0 [f] 

Pb(OH)3Cl  2 Pb2+ + Cl- + 3 H2O → Pb(OH)3Cl + 3 H+ -8.8 [a] 

[a] Allison et al. (1991), [b] fit from Stronach and Glasser (1997), [c] Perkins and Palmer (1999), [d] 
Bothe and Brown (2004),  
[e] Bennet et al. (1992), [f] Adjusted LogK  from the Hatches database (see subsection 3). 
 
Table 2  
Calculated chemistry of pore water without considering (PW-A)  
or considering (PW-B) the sorption of Na on CSH phases. 
 
 PW-A  PW-A  
pH 13.7  13.3  
Na+ 16 550 mg/l 8 800 mg/l 
K+ 4 100 mg/l 4 100 mg/l 
Ca2+ 22 mg/l 64 mg/l 
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Pb2+ 135 mg/l 57 mg/l 
Al3+ 3 mg/l 0.08 mg/l 
H4SiO4 658 mg/l 99 mg/l 
Cl- 5 050 mg/l 5 050 mg/l 
SO4

2- 1 267 mg/l 1 250 mg/l 
 
 
 
 
Table 3  
Sensitivity of the calculated cumulative releases (mg/kg of solid)  
with respect to the refinement of the calculation grid.} 
 
Node size (m) Na K Ca Pb H4SiO4 Cl SO4 
2.5x10-3 1 100 285 1 290 11 4.5 670 80 
1.25x10-3 1 100 285 2 750 35 6 760 80 
6.25x10-4 1 100 285 4 585 54 13.5 760 96 
3.1x10-4 1 100 285 5 000 63 58 715 125 
1.5x10-4 1 100 285 5 000 67 250 715 150 
1.5x10-4  (*) 1 100 285 9 200 132 2 050 715 240 
 
Experimental 

 
1 050 

 
350 

 
15 840 

 
70 

 
12 750 

 
500 

 
245 

(*) This simulation takes into account the feedback of mineralogical evolution on porosity and diffusion 
coefficient. 
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Fig.1. Zoom on the reactor zone of the dynamic leaching test applied to the monolithic waste (left) and 
one of the calculation grids assuming cylindrical symmetry (right). 

 
 
 
 

  
 
Fig.2. Evolution of aqueous concentrations and pH during the sequential leaching steps of the MMF test. 

 
 
 
 
 

 
 

Fig.3. Solubility of lead as a function of pH (closed-system conditions). 
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Fig. 4. Sensitivity of the released instantaneous flux and cumulative mass of sodium with respect to the 
effective diffusion coefficient: De = 3x10-10 m2/s (test-case I), De = 3x10-12 m2/s (test-case II), and De = 

3x10-13 m2/s (test-case III). 
 
 
 
 
 
 

 

 
 

Fig. 5. Evolution of pH in the leachate solution of the reactor (left) and pH profile after 62 days (right). 
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Fig. 6. Released cumulative mass of elements. 
 
 
 
 
 
 

  
 

Fig. 7. Surface alteration of the monolithic S/S waste (1D profile along the segment A-A' of Fig.1). 
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Fig. 8. Dissolution of Friedel's salt (left) and precipitation of hydrotalcite (right) after 62 days. 
 


