30 research outputs found

    The performance of RAMS in representing the convective boundary layer structure in a very steep valley

    Get PDF
    Data from a comprehensive field study in the Riviera Valley of Southern Switzerland are used to investigate convective boundary layer structure in a steep valley and to evaluate wind and temperature fields, convective boundary layer height, and surface sensible heat fluxes as predicted by the mesoscale model RAMS. Current parameterizations of surface and boundary layer processes in RAMS, as well as in other mesoscale models, are based on scaling laws strictly valid only for flat topography and uniform land cover. Model evaluation is required to investigate whether this limits the applicability of RAMS in steep, inhomogeneous terrain. One clear-sky day with light synoptic winds is selected from the field study. Observed temperature structure across and along the valley is nearly homogeneous while wind structure is complex with a wind speed maximum on one side of the valley. Upvalley flows are not purely thermally driven and mechanical effects near the valley entrance also affect the wind structure. RAMS captured many of the observed boundary layer characteristics within the steep valley. The wind field, temperature structure, and convective boundary layer height in the valley are qualitatively simulated by RAMS, but the horizontal temperature structure across and along the valley is less homogeneous in the model than in the observations. The model reproduced the observed net radiation, except around sunset and sunrise when RAMS does not take into account the shadows cast by the surrounding topography. The observed sensible heat fluxes fall within the range of simulated values at grid points surrounding the measurement sites. Some of the scatter between observed and simulated turbulent sensible heat fluxes are due to sub-grid scale effects related to local topograph

    Observations and Numerical Simulations of Subrotor Vortices during T-REX

    Get PDF
    High-resolution observations from scanning Doppler and aerosol lidars, wind profiler radars, as well as surface and aircraft measurements during the Terrain-induced Rotor Experiment (T-REX) provide the first comprehensive documentation of small-scale intense vortices associated with atmospheric rotors that form in the lee of mountainous terrain. Although rotors are already recognized as potential hazards for aircraft, it is proposed that these small-scale vortices, or subrotors, are the most dangerous features because of strong wind shear and the transient nature of the vortices. A life cycle of a subrotor event is captured by scanning Doppler and aerosol lidars over a 5-min period. The lidars depict an amplifying vortex, with a characteristic length scale of ∼500–1000 m, that overturns and intensifies to a maximum spanwise vorticity greater than 0.2 s−1. Radar wind profiler observations document a series of vortices, characterized by updraft/downdraft couplets and regions of enhanced reversed flow, that are generated in a layer of strong vertical wind shear and subcritical Richardson number. The observations and numerical simulations reveal that turbulent subrotors occur most frequently along the leading edge of an elevated sheet of horizontal vorticity that is a manifestation of boundary layer shear and separation along the lee slopes. As the subrotors break from the vortex sheet, intensification occurs through vortex stretching and in some cases tilting processes related to three-dimensional turbulent mixing. The subrotors and ambient vortex sheet are shown to intensify through a modest increase in the upstream inversion strength, which illustrates the predictability challenges for the turbulent characterization of rotors

    Multi-scale transport and exchange processes in the atmosphere over mountains. Programme and experiment

    Get PDF
    TEAMx is an international research programme that aims at improving the understanding of exchange processes in the atmosphere over mountains at multiple scales and at advancing the parameterizations of these processes in numerical models for weather and climate prediction–hence its acronyms stands for Multi-scale transport and exchange processes in the atmosphere over mountains – Programme and experiment. TEAMx is a bottom-up initiative promoted by a number of universities, research institutions and operational centres, internationally integrated through a Memorandum of Understanding between inter- ested parties. It is carried out by means of coordinated national, bi-national and multi-national research projects and supported by a Programme Coordination Office at the Department of Atmospheric and Cryospheric Sciences of the University of Innsbruck, Austria. The present document, compiled by the TEAMx Programme Coordination Office, provides a concise overview of the scientific scope of TEAMx. In the interest of accessibility and readability, the document aims at being self-contained and uses only a minimum of references to scientific literature. Greyboxes at the beginning of chapters list the literature sources that provide the scientific basis of the document. This largely builds on review articles published by the journal Atmosphere between 2018 and 2019, in a special issue on Atmospheric Processes over Complex Terrain. A few other important literature pieces have been referenced where appropriate. Interested readers are encouraged to examine the large body of literature summarized and referenced in these articles. Blue boxes have been added to most sub-chapters. Their purpose is to highlight key ideas and proposals for future collaborative research

    Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain

    Get PDF
    The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and outlines possible research priorities for the future. The review describes the limitations of the experimental study of turbulent exchange over complex terrain, the impact of slope and valley breezes on the structure of the convective boundary layer, and the role of intermittent mixing and wave–turbulence interaction in the stable boundary layer. The interplay between exchange processes at different spatial scales is discussed in depth, emphasizing the role of elevated and ground-based stable layers in controlling multi-scale interactions in the atmosphere over and near mountains. Implications of the current understanding of exchange processes over mountains towards the improvement of numerical weather prediction and climate models are discussed, considering in particular the representation of surface boundary conditions, the parameterization of sub-grid-scal

    A Mesoscale Model-Based Climatography of Nocturnal Boundary-Layer Characteristics over the Complex Terrain of North-Western Utah

    No full text
    Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012–2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface

    The Influence of Terrain Smoothing on Simulated Convective Boundary-Layer Depths in Mountainous Terrain

    No full text
    Many applications rely on a correct estimation of the convective boundary layer (CBL) depth over mountainous terrain, but often these applications use numerical model simulations. Although models inevitably smooth terrain, the amount of smoothing depends on grid spacing. We investigate the behavior of the CBL in coarse- and fine-grid models applied to mountainous terrain by using output from an operational mesoscale modeling system and by performing quasi-idealized simulations. We investigate different areas in different climate zones using different CBL top derivation methods, grid spacing ratios, planetary boundary layer (PBL) schemes, and terrain smoothing. We find that when compared to fine-grid simulations, CBL depths are systematically larger in coarse domains over mountaintops, and to a lesser extent in valleys. On average, differences between coarse- and fine-domains over mountaintops could reach around 10%. In certain locations, differences could be as high as 25%. We attribute the result to terrain smoothing. Similarly, when using a coarse-grid CBL height (relative to mean sea level) interpolated using fine-grid terrain information, there is good agreement with fine-grid CBL depths over mountaintops and less agreement in valleys. Our results have implications for applications that use output from coarse model grids in mountainous terrain. These include inverse modeling studies (e.g., greenhouse gas budget estimations or integrated water vapor transport), PBL evaluation studies, climate research, air quality applications, planning and executing prescribed burns, and studies associated with precipitation over mountainous terrain

    Downscaling Maximum Temperatures to Subkilometer Resolutions in the Shenandoah National Park of Virginia, USA

    Get PDF
    Downscaling future temperature projections to mountainous regions is vital for many applications, including ecological and water resource management. In this study, we demonstrate a method to downscale maximum temperatures to subkilometer resolutions using the Parameter-elevation Regression on Independent Slopes Model (PRISM). We evaluate the downscaling method with observations from a network of temperature sensors deployed along western and eastern slopes of Virginia’s Shenandoah National Park in the southern Appalachian Mountains. We find that the method overestimates mean July maximum temperatures by about 2°C (4°C) along the western (eastern) slopes. Based on this knowledge, we introduce corrections to generate maps of current and future maximum temperatures in the Shenandoah National Park
    corecore