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Downscaling future temperature projections to mountainous regions is vital for many applications, including ecological and water
resource management. In this study, we demonstrate a method to downscale maximum temperatures to subkilometer resolutions
using the Parameter-elevation Regression on Independent Slopes Model (PRISM). We evaluate the downscaling method with
observations from a network of temperature sensors deployed along western and eastern slopes of Virginia’s Shenandoah National
Park in the southern Appalachian Mountains. We find that the method overestimates mean July maximum temperatures by about
2∘C (4∘C) along the western (eastern) slopes. Based on this knowledge, we introduce corrections to generate maps of current and
future maximum temperatures in the Shenandoah National Park.

1. Introduction

General circulation models (GCMs) predict changing tem-
perature and moisture patterns in many regions of the
world due to increases in atmospheric carbon dioxide (CO

2
)

concentration [1]. The most significant changes are expected
at high elevations [2, 3] which include the habitats of many
endangered species [4, 5]. One example is the Shenandoah
salamander, Plethodon shenandoah (P. shenandoah) whose
habitats are located in a 6 km2 area along ridgetops in
the Shenandoah National Park (SNP) [6]. There is large
uncertainty in how climate change will affect the local climate
in these habitats partly because the grid spacing of GCMs,
on the order of a few hundred kilometers, cannot resolve
the impacts of climate change at local to regional scales [2].
Even regional climate models (RCMs) with resolutions of
a few tens of kilometers are still too coarse to assess the
effects of climate change on the scale of local habitats. For
example, a 50 km grid spacing typical of RCMs [7, 8] averages
the elevation changes across the grid, thereby smoothing
the topography in mountainous regions [9] including the
Blue Ridge Mountains in and around SNP. This topographic
smoothing makes it very difficult to understand projected
climate changes in these mountainous regions.

To reduce the uncertainty of climate change projections
in mountainous regions, RCMs must be further downscaled
which is done using either dynamical and/or statistical tech-
niques [10, 11]. Dynamical downscaling techniques use high-
resolution meteorological models which are computationally
intensive and can have difficulties resolving atmospheric
processes in complex terrain at subkilometer resolutions
[12]. Statistical downscaling techniques include regression
techniques and stochastic modeling [13]. Many statistical
downscaling techniques assume a constant lapse rate to
downscale temperatures to spatial scales on the order of
20 km [14]. Assuming a constant lapse rate is not justified
for many regions [15] because lapse rates exhibit significant
spatial variability that are a function of season [16, 17],
slope position (i.e., leeward versus windward) [15], and slope
azimuth [18, 19].

On the other hand, gridded climate data sets at high
resolution (on the scale of 1–4 km) have been developed
from which spatially and temporally varying lapse rates can
be derived. Two widely known examples of these gridded
climate data sets that are based on networks of surface
observations are the Parameter-elevation Regression on
Independent Slopes Model (PRISM) [20, 21] and the Daily
Surface Weather and Climatological Summary (DAYMET)
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[22] which have been used in, for example, ecological
applications [23] and climate studies [24].

To obtain accurate temperature projections at subkilo-
meter scales, statistical downscaling methods could use
the spatially and temporally varying lapse rates that can
be derived from high-resolution gridded data sets. In this
study, we develop such a downscaling method and use this
method to downscale near-surface temperatures maps at
the high elevation habitats of P. shenandoah in SNP under
current and future climate conditions. We limit ourselves
to a demonstration of our downscaling method for July
maximum temperatures motivated by the importance of
changes in summer maximum temperatures to the survival
of P. shenandoah.

2. Methods

2.1. Site Description. SNP is located along the crest of the
Virginia Blue Ridge Mountains on the eastern flank of
the southern Appalachians in the eastern US. The park is
oriented southwest-northeast and extends 115 km from near
Waynesboro, Virginia, to Front Royal, Virginia. Elevations
in SNP range from 200m above mean sea level (msl) in the
valleys to 1000–1200mmsl along the ridgeline. East of SNP is
the Virginia Piedmont, and the Shenandoah Valley is west of
SNP.The climate of SNP ranges fromhumid subtropical at the
lower elevations to humid continental along the ridgetops.

2.2. Downscaling Method. Our downscaling method uses
the gridded temperature data sets from PRISM. PRISM
assimilates observations of temperature (precipitation) from
approximately 10,000 (13,000) surface stations in the conter-
minous US and linearly interpolates these observations to
high spatial resolutions using elevation, ocean proximity, and
topographic facet [20, 25]. PRISM outputs two data sets: (1)
mean monthly maximum and minimum temperature and
total precipitation from 1895 through 2013 at a 4 km resolu-
tion and (2) 30-year monthly climate means for maximum
and minimum temperature and total precipitation averaged
over 1971–2000 (and, as of 2014, 1981–2010) at 800m spatial
resolution [20, 21]. PRISM gridded data sets are available
online from http://prism.oregonstate.edu/.

The 4 km and 800m spatial resolutions of the PRISMdata
sets are too coarse to resolve temperature variability across
the habitats of P. shenandoah, and thus further downscaling
is required. In our downscaling method (Figure 1), we down-
scale the 4 km PRISMmeanmonthly maximum temperature
to a 15m resolution digital elevation model (DEM), which
is the highest-resolution DEM available for the region, using
spatially and temporally varying lapse rates. These lapse rates
represent the line of best fit between elevation and the 30-
year, 800m mean monthly maximum temperature for the
25 elevation-temperature pairs within each 4 km grid cell.
Throughout SNP, this relationship is high (𝑟 > 0.98, 𝑃 <
0.001). Thus, the downscaled maximum temperature can be
written as follows:

𝑇Downscaled = 𝑇4 km + (𝑍4 km − 𝑍DEM) ⋅ LR0.8 km, (1)
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Figure 1: Summary of our downscaling method in which we
downscale the monthly 4 km mean monthly maximum PRISM
temperature (𝑇

4 km) to a 15m resolution DEM based on the lapse
rates derived from the 800mPRISM30-yearmonthly climatemeans
for maximum temperature over the period 1971–2000 (LR

0.8 km)
and the difference between the mean elevation of the 4 km grid
box (𝑍

4 km) and elevation of each 15m grid cell (𝑍DEM) to obtain
downscaled PRISM (𝑇Downscaled) at a 15m resolution. We then
apply a correction to 𝑇Downscaled based on the slope temperature
measurements to obtain more realistic, high-resolution estimates of
temperature in Shenandoah National Park.

where 𝑇Downscaled is the PRISM mean monthly maximum
temperature downscaled to a 15m resolution DEM, 𝑇

4 km
is the 4 km PRISM mean monthly maximum temperature,
𝑍
4 km is the mean elevation of the 4 km grid box, 𝑍DEM is

the elevation of each 15m grid cell, and LR
0.8 km is the lapse

rate based on the 800m PRISM 30-year monthly climate
means for maximum temperature, where a positive lapse
rate indicates a decrease in temperature with height. This
downscaling method is evaluated using observations from
a network of temperature sensors, discussed in the next
section.

2.3. Slope Measurements. The observations which we use to
evaluate our downscaling method come from a network of
temperature sensors deployed in SNP. We use Onset HOBO
Pro V2 temperature-relative humidity sensors which have
a manufacturer-state accuracy of ±0.21∘C over the range 0∘
to 50∘C for temperature and ±2.5% from 10% to 90% for
relative humidity. These sensors have been tested and used
successfully in many applications to investigate near-surface
temperature variations [26, 27].

In April, 2011, we deployed 37 sensors along 3 transects in
SNP. The transect east of the ridgeline included 18 sensors,
and the transects west of the ridgeline included 19 sensors
(Figure 2). For all transects, sensors were deployed along a
line extending from near the ridgeline (about 1000mmsl) to
about 600mmsl. Of the 19 sensors along the west side of the
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Figure 2: Location of experimental site within Virginia (black box
in the inset map) and map of the study area. The red triangles and
yellow line indicate the locations of the temperature sensors and the
ShenandoahNational Park boundary, respectively.The two ridgetop
climatemonitoring stations, BigMeadows andPinnacles, are labeled
and shown with a black triangle. Shading indicates elevation.

ridgeline, 14 were deployed along one transect and 5 were
deployed along another transect 6 km to the north. Along the
transect east of the ridgeline, we deployed sensors in pairs at
nine different elevations to assess the impact of different slope
azimuths on the temperature measurements. Sensors were
deployed approximately 50m apart at each elevation so that
the effect of slope azimuth on temperature could be assessed.

We deployed all sensors adjacent to hiking trails for ease
of access and to minimize disturbances to the area. They
were attached to a fence post, installed 1.5m above ground
level (agl), and enclosed within a radiation shield (type RS-
3 from the Onset Corporation) to reduce radiation errors.
All sensors were visited approximately every 2-3 months to
download data. 60min means from 10min samples were
computed, and the daily maximum temperature was deter-
mined from the 60minmeans.Themeanmonthly𝑇max is the
mean of all daily maximum temperatures during one month.
Our analyses in this study are based on data collected between
July 2011 and July 2013. The data set for this period is mostly
complete, but there are occasional gaps in the record due
to various factors such as water short-circuiting the sensor
electronics, damage by wildlife, and difficulties downloading
data from the sensor.

Table 1: Mean bias error between downscaled PRISM and the
observations along the west and east slope of SNP in July 2011, 2012,
and 2013.

Month West slope MBE (∘C) East slope MBE (∘C)
July, 2011 2.21 4.66
July, 2012 1.91 3.50
July, 2013 1.34 3.85

2.4. Long-Term Climate Stations. In addition to evaluating
our downscaling method using slope temperature measure-
ments, we use 2m air temperature data from two long-
term monitoring sites along the ridgetop of SNP: Big Mead-
ows (38.53N, 78.44W, 1079mmsl) and Pinnacles (38.62N,
78.35W, 1017mmsl). The monitoring site at Big Meadows is
located in an enclosed grassy field approximately 15m from a
mixed deciduous forest canopy. Observations of daily max-
imum and minimum temperature, as well as precipitation,
began in 1935 and are obtained from the National Climate
Data Center (NCDC). Hourly meteorological observations
began in 1988 as part of the Environmental ProtectionAgency
(EPA) Clean Air Status and Trends (CASTNET) network.
Beginning in 2008, half hour meteorological measurements
began at Pinnacles along a 17m walkup tower located in
a forest with a mean height of approximately 14m [28].
Temperature data from aHOBOProV2 sensor installed 40m
north of the tower in a small grassy field at 1.5m agl are also
used.

2.5. Regional Climate Models. We apply our downscaling
method to RCM output from the North American Regional
Climate Change Assessment Program (NARCCAP). NARC-
CAP uses 4 GCMs that provide boundary conditions for 6
different RCMs [7, 8]. Because not all GCM-RCM combina-
tions are available, we use output from 7 GCM-RCM com-
binations in this study. All GCM-RCM combinations that
comprise NARCCAP have a 50 × 50 km2 spatial resolution
over North America and are run for the past (1971–2000) and
future (2041–2070) using the Special Report on Emissions
Scenarios (SRES) A2 emissions scenario [7].The A2 scenario
assumes rapid population growth and slow economic growth
which result in greater anthropogenic CO

2
emissions than in

the other scenarios used by the Intergovernmental Panel on
Climate Change (IPCC) [29].

3. Results and Discussion

3.1. Evaluation of the Downscaling Method. When we apply
the downscaling method discussed in Section 2.2, we find
that downscaled PRISM consistently overestimates mean
monthly𝑇max in July 2011, 2012, and 2013 (Table 1).The largest
overestimates occur along the east slope of SNP, where the
mean bias error (MBE) between downscaled PRISM and
the slope observations of mean 𝑇max is 3.5–4.7

∘C (Figure 3).
Along the west slope of SNP, the warm bias is smaller, but
downscaled PRISM still overestimates mean July 𝑇max by 1.3–
2.2∘C.
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Figure 3: Comparison between observed mean July 𝑇max from the sensor network and downscaled PRISM for July, 2011 (a), July, 2012 (b),
and July, 2013 (c) using PRISM-derived lapse rates. Open circles indicate comparisons along the west slope; filled circles indicate comparisons
along the east slope; “+” and “X” denote Big Meadows and Pinnacles, respectively. Black dotted line is the 1 : 1 line. Note that Big Meadows
measurements are unavailable in 2013. Also note the same range but different scales on the 𝑥-axis and 𝑦-axis in panel (c).

There are also differences in mean July 𝑇max between
the sensor pairs deployed at different azimuths along the
east slope, with mean July 𝑇max along the southeast-facing
slopes on average 0.5∘C higher than the northeast-facing
slopes. These differences are lower than those reported in

previous studies by, for example, Bolstad et al. [19] in the
Smoky Mountains, where mean daily 𝑇max was 1.4

∘C higher
along south-facing slopes than along northwest-facing slopes
regardless of season. The larger differences in the Bolstad et
al. study occur because neither of the slopes on which our
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Table 2: 4 km PRISM mean elevation, 4 km PRISM lapse rate based on 800m PRISM climate means, and July 2011, 2012, and 2013 4 km
PRISM mean July 𝑇max for the locations at which temperature sensors were deployed along the west slope and east slope of SNP.

PRISM variable West slope East slope
4 km mean elevation from PRISM (m) 646.69 888.89
4 km PRISM lapse rate based on 800m PRISM climate means (∘Ckm−1) 7.84 7.80
2011 mean July 𝑇max from PRISM (∘C) 30.87 28.72
2012 mean July 𝑇max from PRISM (∘C) 30.08 28.19
2013 mean July 𝑇max from PRISM (∘C) 27.46 25.61

sensors were deployed was oriented either directly north or
directly south and because the sensors in the Bolstad et al.
study were installed above the forest canopy.

3.2. Causes for Differences between Maximum Tempera-
tures from the Downscaling Method and Observations. The
observed differences between mean July 𝑇max from the mea-
sured slope temperatures and downscaled PRISM highlight
some of the challenges that arise when using PRISM in
mountainous regions. Differences can occur because of errors
in PRISM and/or observational errors. The warm bias in
downscaled PRISM can arise because of the interpolation
of climatological data in data-sparse regions. PRISM inter-
polates data from climate stations by calculating a linear
relationship (lapse rate in the case of temperature) between
elevation and the variable of interest, which is linearly
extrapolated in locations where there are no high-elevation
stations [21, 25]. Thus, in regions with nearby observation
stations at similar elevations, PRISM performs well. At SNP
Headquarters in Luray, VA (38.67N, 78.37W, 359mmsl),
which is the nearest low elevation station to SNP and is
located about 5 km northwest of the transect of sensors
along the west slope, downscaled PRISM and observed mean
July 𝑇max agree to within about 0.5∘C. The warm bias in
downscaled PRISM may occur because the mean monthly
4 km PRISM July 𝑇max grids are based on temperatures made
at relatively low elevation stations.We note that the lapse rates
of 7-8∘Ckm−1 based on the 30-year climate means (Table 2)
are comparable to the mean July 𝑇max lapse rates observed
along the slope. The overestimates in the 4 km July 𝑇max
PRISM grids are most evident in July 2011 and July 2012 when
the largest warm bias exists. In July 2013 when the 4 km July
𝑇max is about 3

∘C lower, there is better agreement along the
west slope but slightly worse agreement along the east slope.
We suspect that the warm bias in downscaled PRISM is partly
caused by the lack of high elevation stations in the region that
can help constrain temperature estimates along the slopes of
SNP.

A warm bias in downscaled PRISM may also occur
because of canopy cover differences between the low eleva-
tion sites (used in PRISM) and the mountain slopes of SNP.
All of the locations along the slopes at which we deployed
temperature sensors have canopy cover >60% based on
ArcGIS analyses and on our own observations. Deployment
in locations with dense canopies helped to minimize radia-
tion errors that can occur in the naturally ventilated radiation
shields used in this study [30]. However, many of the climate

stations used in PRISM are not located in forests but instead
located in grassy fields, which typically have higher daytime
maximum temperatures [31, 32]. At Pinnacles, mean July
𝑇max measured 2m agl within the forest canopy is on average
2∘C cooler than the temperature in the open, grassy field
40m from the tower. Because of this difference, the July
𝑇max MBE is much smaller between downscaled PRISM and
the measurements from the grassy field at Pinnacles than
between downscaled PRISM and the measurements from
within the forest canopy at Pinnacles. Similarly, downscaled
PRISM agrees well with temperature observations from Big
Meadows (c.f. Figure 3), which is a monitoring station more
typical of the stations used to generate the PRISM data sets.

Differences in slope azimuth angle may also explain some
of the bias between downscaled PRISM and the observa-
tions. The west slope has greater afternoon exposure and
thus higher average near-surface incoming solar radiation
[33] than the east slope, resulting in higher mean monthly
𝑇max than the east slope and thus better agreement with
downscaled PRISM.

Thus, we conclude that the warm bias in downscaled
PRISM is due to a combination of factors, including a lack of
high elevation stations in the region to constrain temperature
estimates along the slopes of SNP, and differences in canopy
cover and slope azimuth. To further investigate the potential
effect of canopy cover and slope azimuth, we apply our down-
scaling method to January when these factors exert a smaller
influence on temperature. In January, the overestimates in
downscaled PRISM temperature are smaller than in July, on
the order of 1.0–1.5∘C, and the biases along the eastern and
western slope are comparable to each other. Furthermore,
the differences in mean January 𝑇max between the sensor
1.5m agl along the tower at Pinnacles and the sensor in the
adjacent field are negligible and are within themanufacturer’s
stated accuracy of the sensors. Because downscaled PRISM
agrees better with the observations in the winter when the
effects of canopy cover and azimuth are reduced, we suspect
that PRISM’s warm bias in mean July 𝑇max along the slopes
in SNP occurs because (1) the stations used to generate the
monthly 4 km PRISM grids in and around SNP are located
at low elevation, nonforested sites and (2) there is a lack of
surface monitoring stations at high elevations to constrain
temperature estimates.

3.3. Corrections to Downscaled PRISM for SNP. To summa-
rize, the monthly 4 km PRISM mean July 𝑇max (Figure 4(a))
does not account for the fine-scale temperature variations at
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Figure 4:Maps of mean𝑇max for July 2012 resulting from the different steps in our downscalingmethod. Panel (a) shows 4 km PRISM output;
panel (b) shows PRISM downscaled to 15m in SNP using the 30-year PRISM lapse rates and without any corrections applied; panel (c) shows
PRISM downscaled to 15m in SNP with our corrections from Table 1 applied to each 15m grid box; panel (d) shows estimated mean 𝑇max
in SNP assuming a temperature increase of 3.3∘C (average projected temperature increase from NARCCAP RCMs for SNP) applied to July,
2012 mean 𝑇max. Thin black lines denote elevation contours at 100m spacing, with contour lines labeled; solid black line indicates the SNP
boundary; black triangles mark temperature sensors; and the two ridgetop climate monitoring stations, Big Meadows and Pinnacles, are
labeled. Note that the downscaling method is only applied to a 15m DEM inside the SNP boundary (panels (b)–(d)).

high elevation habitats in the region.Downscaling using lapse
rates based on the 30-year climate means (Figure 4(b)) yields
temperature estimates that have a warm bias and thus do
not agree well with the observations.Therefore, we introduce
corrections to the downscaled PRISM to provide more

accurate estimates of present-daymeanmonthly𝑇max in SNP.
The corrections that we apply are a function of (1) location
relative to the ridgeline, which we define using catchment
delineation in ArcGIS, and (2) slope azimuth obtained from
a 15m DEM. The corrections are thus the MBE between the
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Table 3: Summary of empirical corrections applied to downscaled PRISM mean July 𝑇max.

Correction applied to downscaled PRISM
mean July 𝑇max along south-facing slopes

(∘C)

Correction applied to downscaled PRISM
mean July 𝑇max along non-south-facing

slopes (∘C)
West slope in SNP 1.32 1.82
East slope in SNP 3.50 4.00

observations and downscaled PRISMaveraged over July, 2011,
July 2012, and July, 2013 (Table 3). Therefore, locations west
(east) of the ridgeline and locations that are south-facing (not
south-facing) have a smaller (larger) correction. The use of
these corrections enables us to produce high-resolutionmaps
of present-day mean monthly 𝑇max in SNP (Figure 4(c)) that
are more accurate than the maps shown in Figures 4(a) and
4(b).

3.4. Climate Change Projections for SNP Using RCMs. The
corrected fine-scale present-day maps of mean monthly 𝑇max
from Figure 4(c) can be used to estimate future temperatures
in the habitat of P. shenandoah and in SNP using a tem-
perature change obtained from the NARCCAP RCMs. To
provide confidence in the NARCCAP RCMs, we compare
observed monthly 𝑇max from the Big Meadows NCDC data
set withNARCCAPoutput over the period 1971–2000.Due to
the coarse resolution of the NARCCAP RCMs, the elevation
of the NARCCAP grid box containing Big Meadows is
about 800m lower than Big Meadows’ actual elevation.Thus,
all NARCCAP RCMs overestimate the temperature at Big
Meadows. The GFDL-RCM3 model has the smallest MBE,
whereas the CRCM-CCSMmodel has the largest MBE.

All models project an increase in mean July 𝑇max of 2–
4∘C (0.3–0.6∘C decade−1) through 2055 for the grid box
containing the P. shenandoah habitat and Big Meadows. The
CGCM-WRFG (GFDL-HRM3) model suggests the smallest
(largest) increase (0.29∘C decade−1) (+0.60∘C decade−1),
whereas the GFDL-RCM3 model projects an increase of
0.44∘C decade−1 (Table 4).

To estimate the projected changes in mean July 𝑇max
between the present-day and future NARCCAP simulations,
we apply the mean temperature increase in NARCCAP
RCMs (3.3∘C) to present-day mean July 𝑇max (Figure 4(d)).
These types of maps can be used by biologists and resource
managers to assess and mitigate the effects of climate change
on habitats such as those of P. shenandoah.

3.5. Application of the Downscaling Method to other Grid-
ded Climate Data Sets. While we have focused on using
PRISM in our downscaling method, other gridded climate
data sets could be used as well. One example is DAYMET.
DAYMET uses a weighted least-squares regression to inter-
polate temperature, precipitation, moisture, and radiation
measurements from about 8000 surface monitoring stations
to a 1 km resolution over the conterminousUS [22].Whenwe
use DAYMET in our downscaling method for mean monthly
𝑇max, we find a bias similar to PRISM. Whereas downscaled

Table 4: Projected change in mean July 𝑇max in SNP. Shown
in parentheses is the projected change in mean July 𝑇max in
∘C decade−1. The full names of the GCM-RCM combinations
are CCSM-CRCM: community climate system model-Canadian
regional climate model; CGCM-CRCM: coupled general circu-
lation model-Canadian regional climate model; CCSM-WRFG:
community climate systemmodel-weather research and forecasting
model; CGCM-WRFG: coupled general circulation model-weather
research and forecasting model; GFDL-HRM3: geophysical fluid
dynamics model-Hadley regional model version 3; CGCM-RCM3,
Coupled General Circulationmodel-regional climatemodel version
3; GFDL-HRM3: geophysical fluid dynamicsmodel-Hadley regional
model version 3.

GCM-RCM Change in mean July 𝑇max (
∘C) (∘C

decade−1)
CCSM-CRCM +3.37 (+0.48)
CGCM-CRCM +3.91 (+0.56)
CCSM-WRFG +3.44 (+0.49)
CGCM-WRFG +2.04 (+0.29)
GFDL-HRM3 +4.23 (+0.60)
CGCM-RCM3 +2.74 (+0.39)
GFDL-RCM3 +3.11 (+0.44)

mean monthly 𝑇max using DAYMET and PRISM correlate
well (𝑟 = 0.85, 𝑃 < 0.01), downscaled mean monthly 𝑇max
using DAYMET also overestimates temperatures along both
the west slope and east slope, with a bias in mean July 𝑇max of
about 4∘C (6∘C) along the west (east) slope and a 1-2∘C bias in
winter. Thus, the use of DAYMET for mean July 𝑇max is also
unreliable in SNP without using corrections.

3.6. Limitations of theDownscalingMethod. Thedownscaling
method presented in this paper is an important step toward
making gridded climate data sets such as PRISMorDAYMET
more reliable in regions of complex terrain. However, there
are some limitations and caveats that are not explicitly
considered with our downscaling method.

(1) Our downscaling method does not consider year-
to-year lapse rate variations but instead downscales,
assuming a lapse rate based on 30-year climatemeans.
Although mean maximum temperatures were about
2-3∘C higher in July 2011 than in July 2013 at the sites
where temperature was measured in SNP, the lapse
rates showed relatively little variability in the three
July months of interest and compared well with the
30-year mean PRISM lapse rates.
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(2) Our downscalingmethod does not explicitly incorpo-
rate other factors that affect near-surface temperature
on subkilometer spatial scales, such as vegetation
cover, soil moisture, soil type, vegetation type [26,
34], and shading by adjacent mountain ridges [33].
Further understanding and explicitly quantifying
these effects and their relative importance over the
spatial scale of SNP is very difficult and requires
extensive networks of high-density observations. In
addition, high-resolution atmospheric model simu-
lations could be used to help isolate some of the
other important drivers of near-surface spatiotempo-
ral temperature variability in this region.

In addition to limitations with the downscaling method
itself, there are several limitations with the corrections that
we introduce in this study to make PRISM more reliable in
SNP.

(1) The corrections do not vary with elevation. We found
that the difference between observed and downscaled
mean July𝑇max for the sensors deployed along the east
slope did not vary as a function of elevation. Along the
west slope of SNP, there was more variability in this
temperature difference because of greater variability
in local slope characteristics that affect temperature,
for example, inclination and azimuth [18, 19, 26], than
along the east slope.

(2) There is a discontinuity in downscaled temperature
present along the ridgeline. To remove this dis-
continuity, the application of our correction should
decrease with elevation in the immediate vicinity of
the ridgeline. Due to logistical constraints such as
the accessibility to some areas, permission issues,
and manpower requirements, each transect does not
begin right at the ridgeline. Therefore, we cannot
fully assess the necessary corrections that should be
applied within forested locations near the ridgeline.

(3) Because of the logistical constraints mentioned pre-
viously, our corrections for slope azimuth are not
based on measurements made along slopes that were
either directly north-facing or directly south-facing.
Instead, our correction for azimuth is based on
measurements from northeast-facing and southeast-
facing slopes. Based on previous studies [19], we
expect a larger temperature difference between slopes
that are truly north-facing and slopes that are truly
south-facing.

(4) The correction factors are based on data from three
July months. Although data from more July months
would help to refine the empirical correction factors
that we apply to PRISM, we expect that, even with
additional years of data, these correction factors
will change by no more than about 0.5∘C, which is
much smaller than the range of projected temperature
changes from the suite of NARCCAP RCMs (c.f.
Table 4).

4. Conclusions and Implications

In this study, we have presented a new method to downscale
maximum temperatures in a mountainous region using
PRISM and have evaluated our method with temperature
observations frommountain slopes in SNP.We found that the
downscaled maximum temperatures using PRISM, as well
as using other gridded climate data sets, have a warm bias
in SNP. Several reasons for this warm bias were suggested,
including the lack of high-elevation stations in the region
to constrain temperature estimates and the effects of canopy
cover and slope azimuth. To reduce the warm bias, we intro-
duced corrections that depend on the location relative to the
ridgeline and the location’s azimuth. Including corrections in
the downscaling method provides more accurate estimates of
near-surface temperature than could be obtained using either
a fixed environmental lapse rate or a spatially varying lapse
rate based on 30-year PRISM climate means. Though there
are several limitations, the application of our corrections to
downscaled PRISM represents an important step to improve
temperature projections at subkilometer spatial scales in SNP
and potentially in othermountainous areas as well.Therefore,
future work should involve the testing and application of our
downscaling method to other mountain slopes. Ongoing and
future work also involves using high-resolution atmospheric
mesoscale models to dynamically downscale RCM output to
SNP and to evaluate how dynamical downscaling methods
compare with the method presented here.
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