28 research outputs found

    Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome

    Get PDF
    Astrocyte function intertwines with the extracellular matrix, whose glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities are found in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We generated human induced pluripotent stem cell-derived FXS and control astrocytes and we found that several pathways associated with urokinase plasminogen activator (uPA) that modulates degradation of extracellular matrix were activated in FXS astrocytes compared with controls. Expression of uPA was increased in FXS astrocytes and levels of uPA were also increased in conditioned medium collected from FXS astrocyte cultures. Levels of uPA correlated inversely with intracellular Ca2+ responses to activation of L-type voltage-gated calcium channels in human astrocytes. Increased uPA augmented neuronal phosphorylation of TrkB, indicating effects of uPA on neuronal plasticity. FXS-specific changes of gene expression during neuronal differentiation preceding astrogenesis likely contributed to altered properties of FXS astrocytes. Our results identified uPA as an important regulator of astrocyte function and demonstrated that increased uPA in human FXS astrocytes modulated astrocytic responses and neuronal plasticity.Peer reviewe

    Network analysis of Down syndrome and SARS-CoV-2 identifies risk and protective factors for COVID-19

    No full text
    SARS-CoV-2 infection has spread uncontrollably worldwide while it remains unknown how vulnerable populations, such as Down syndrome (DS) individuals are affected by the COVID-19 pandemic. Individuals with DS have more risk of infections with respiratory complications and present signs of auto-inflammation. They also present with multiple comorbidities that are associated with poorer COVID-19 prognosis in the general population. All this might place DS individuals at higher risk of SARS-CoV-2 infection or poorer clinical outcomes. In order to get insight into the interplay between DS genes and SARS-cov2 infection and pathogenesis we identified the genes associated with the molecular pathways involved in COVID-19 and the host proteins interacting with viral proteins from SARS-CoV-2. We then analyzed the overlaps of these genes with HSA21 genes, HSA21 interactors and other genes consistently differentially expressed in DS (using public transcriptomic datasets) and created a DS-SARS-CoV-2 network. We detected COVID-19 protective and risk factors among HSA21 genes and interactors and/or DS deregulated genes that might affect the susceptibility of individuals with DS both at the infection stage and in the progression to acute respiratory distress syndrome. Our analysis suggests that at the infection stage DS individuals might be more susceptible to infection due to triplication of TMPRSS2, that primes the viral S protein for entry in the host cells. However, as the anti-viral interferon I signaling is also upregulated in DS, this might increase the initial anti-viral response, inhibiting viral genome release, viral replication and viral assembly. In the second pro-inflammatory immunopathogenic phase of the infection, the prognosis for DS patients might worsen due to upregulation of inflammatory genes that might favor the typical cytokine storm of COVID-19. We also detected strong downregulation of the NLRP3 gene, critical for maintenance of homeostasis against pathogenic infections, possibly leading to bacterial infection complications.Funding: the lab of MD is supported by the CRG Severo Ochoa excellence grant (SEV-2016-0571); the CIBER of Rare Diseases; and Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya (Grups consolidats 2017 SGR 926). We also acknowledge the support of the Spanish Ministry of Science and Innovation and Universities (MSIU) to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme/Generalitat de Cataluny

    Meta-analysis of transcriptomic data reveals clusters of consistently deregulated gene and disease ontologies in Down syndrome

    No full text
    Trisomy of human chromosome 21 (HSA21) causes Down syndrome (DS). The trisomy does not simply result in the upregulation of HSA21--encoded genes but also leads to a genome-wide transcriptomic deregulation, which affect differently each tissue and cell type as a result of epigenetic mechanisms and protein-protein interactions. We performed a meta-analysis integrating the differential expression (DE) analyses of all publicly available transcriptomic datasets, both in human and mouse, comparing trisomic and euploid transcriptomes from different sources. We integrated all these data in a "DS network". We found that genome wide deregulation as a consequence of trisomy 21 is not arbitrary, but involves deregulation of specific molecular cascades in which both HSA21 genes and HSA21 interactors are more consistently deregulated compared to other genes. In fact, gene deregulation happens in "clusters", so that groups from 2 to 13 genes are found consistently deregulated. Most of these events of "co-deregulation" involve genes belonging to the same GO category, and genes associated with the same disease class. The most consistent changes are enriched in interferon related categories and neutrophil activation, reinforcing the concept that DS is an inflammatory disease. Our results also suggest that the impact of the trisomy might diverge in each tissue due to the different gene set deregulation, even though the triplicated genes are the same. Our original method to integrate transcriptomic data confirmed not only the importance of known genes, such as SOD1, but also detected new ones that could be extremely useful for generating or confirming hypotheses and supporting new putative therapeutic candidates. We created "metaDEA" an R package that uses our method to integrate every kind of transcriptomic data and therefore could be used with other complex disorders, such as cancer. We also created a user-friendly web application to query Ensembl gene IDs and retrieve all the information of their differential expression across the datasets.Funding: The lab of MD is supported by the Departament d'Universitats, Recerca i Societat de la Informació (DURSI) de la Generalitat de Catalunya (Grups consolidats 2017 SGR 926). We acknowledge the support of the Agencia Estatal de Investigación (PID2019-110755RB-I00/AEI/ 10.13039/501100011033), H2020 SC1 (GO-DS21- 848077), Jerôme Lejeune Foundation (#2002), NIH (#1R01EB 028159-01), Fundació La Marató-TV3 (#2016/20-30), JPND Heroes AC170006 Ministerio de Ciencia Innovación y Universidades (#RTC2019-007230-1 and #RTC2019-007329-1). We acknowledge support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme / Generalitat de Cataluny

    Specific susceptibility to COVID-19 in adults with Down Syndrome

    No full text
    The current SARS-CoV-2 outbreak, which causes COVID-19, is particularly devastating for individuals with chronic medical conditions, in particular those with Down Syndrome (DS) who often exhibit a higher prevalence of respiratory tract infections, immune dysregulation and potential complications. The incidence of Alzheimer's disease (AD) is much higher in DS than in the general population, possibly increasing further the risk of COVID-19 infection and its complications. Here we provide a biological overview with regard to specific susceptibility of individuals with DS to SARS-CoV-2 infection as well as data from a recent survey on the prevalence of COVID-19 among them. We see an urgent need to protect people with DS, especially those with AD, from COVID-19 and future pandemics and focus on developing protective measures, which also include interventions by health systems worldwide for reducing the negative social effects of long-term isolation and increased periods of hospitalization.This research was supported by the Trisomy-21 Research Society (T21RS) and in part by the Intramural Research Program of the National Institute on Agin

    Where Environment Meets Cognition: A Focus on Two Developmental Intellectual Disability Disorders

    Get PDF
    One of the most challenging questions in neuroscience is to dissect how learning and memory, the foundational pillars of cognition, are grounded in stable, yet plastic, gene expression states. All known epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodelling, and noncoding RNAs regulate brain gene expression, both during neurodevelopment and in the adult brain in processes related to cognition. On the other hand, alterations in the various components of the epigenetic machinery have been linked to well-known causes of intellectual disability disorders (IDDs). Two examples are Down Syndrome (DS) and Fragile X Syndrome (FXS), where global and local epigenetic alterations lead to impairments in synaptic plasticity, memory, and learning. Since epigenetic modifications are reversible, it is theoretically possible to use epigenetic drugs as cognitive enhancers for the treatment of IDDs. Epigenetic treatments act in a context specific manner, targeting different regions based on cell and state specific chromatin accessibility, facilitating the establishment of the lost balance. Here, we discuss epigenetic studies of IDDs, focusing on DS and FXS, and the use of epidrugs in combinatorial therapies for IDDs.The research leading to the results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA Grant Agreement no. 608959. The work of the lab of M. Dierssen presented in the text is funded by FRAXA Foundation, Fondation Jerome Lejeune, Ministerio de Economia y Competitividad (SAF2013-49129-C2-1-R and “Centro de Excelencia Severo Ochoa 2013–2017,” SEV-2012-0208). The laboratory of M. Dierssen is supported by DIUE de la Generalitat de Catalunya (Grups consolidats SGR 2014/1125)

    Where Environment Meets Cognition: A Focus on Two Developmental Intellectual Disability Disorders

    No full text
    One of the most challenging questions in neuroscience is to dissect how learning and memory, the foundational pillars of cognition, are grounded in stable, yet plastic, gene expression states. All known epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodelling, and noncoding RNAs regulate brain gene expression, both during neurodevelopment and in the adult brain in processes related to cognition. On the other hand, alterations in the various components of the epigenetic machinery have been linked to well-known causes of intellectual disability disorders (IDDs). Two examples are Down Syndrome (DS) and Fragile X Syndrome (FXS), where global and local epigenetic alterations lead to impairments in synaptic plasticity, memory, and learning. Since epigenetic modifications are reversible, it is theoretically possible to use epigenetic drugs as cognitive enhancers for the treatment of IDDs. Epigenetic treatments act in a context specific manner, targeting different regions based on cell and state specific chromatin accessibility, facilitating the establishment of the lost balance. Here, we discuss epigenetic studies of IDDs, focusing on DS and FXS, and the use of epidrugs in combinatorial therapies for IDDs.The research leading to the results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA Grant Agreement no. 608959. The work of the lab of M. Dierssen presented in the text is funded by FRAXA Foundation, Fondation Jerome Lejeune, Ministerio de Economia y Competitividad (SAF2013-49129-C2-1-R and “Centro de Excelencia Severo Ochoa 2013–2017,” SEV-2012-0208). The laboratory of M. Dierssen is supported by DIUE de la Generalitat de Catalunya (Grups consolidats SGR 2014/1125)

    Data from: NF-κB oscillations translate into functionally related patterns of gene expression

    No full text
    Several transcription factors (TFs) oscillate, periodically relocating between the cytoplasm and the nucleus. NF-κB, which plays key roles in inflammation and cancer, displays oscillations whose biological advantage remains unclear. Recent work indicated that NF-κB displays sustained oscillations that can be entrained, that is, reach a persistent synchronized state through small periodic perturbations. We show here that for our GFP-p65 knock-in cells NF-κB behaves as a damped oscillator able to synchronize to a variety of periodic external perturbations with no memory. We imposed synchronous dynamics to prove that transcription of NF-κB-controlled genes also oscillates, but mature transcript levels follow three distinct patterns. Two sets of transcripts accumulate fast or slowly, respectively. Another set, comprising chemokine and chemokine receptor mRNAs, oscillates and resets at each new stimulus, with no memory of the past. We propose that TF oscillatory dynamics is a means of segmenting time to provide renewing opportunity windows for decision

    Social factors influence behavior in the novel object recognition task in a mouse model of down syndrome

    Get PDF
    The use of mouse models has revolutionized the field of Down syndrome (DS), increasing our knowledge about neuropathology and helping to propose new therapies for cognitive impairment. However, concerns about the reproducibility of results in mice and their translatability to humans have become a major issue, and controlling for moderators of behavior is essential. Social and environmental factors, the experience of the researcher, and the sex and strain of the animals can all have effects on behavior, and their impact on DS mouse models has not been explored. Here we analyzed the influence of a number of social and environmental factors, usually not taken into consideration, on the behavior of male and female wild-type and trisomic mice (the Ts65Dn model) in one of the most used tests for proving drug effects on memory, the novel object recognition (NOR) test. Using principal component analysis and correlation matrices, we show that the ratio of trisomic mice in the cage, the experience of the experimenter, and the timing of the test have a differential impact on male and female and on wild-type and trisomic behavior. We conclude that although the NOR test is quite robust and less susceptible to environmental influences than expected, to obtain useful results, the phenotype expression must be contrasted against the influences of social and environmental factors.The lab of MD is supported by the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (Grups consolidats 2017 SGR 926, 2017 SGR 138). This research was funded by the Agencia Estatal de Investigación (PID2019-110755RB-I00/AEI/10.13039/501100011033), the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No. 848077. Jerôme Lejeune Foundation (Grant number 2002), NIH (Grant Number: 1R01EB 028159-01), Marató TV3 (#2016/20-30), and JPND (Heroes; AC17/00006). The Centre for Genomic Regulation (CRG) acknowledges the support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa, and the CERCA Program/Generalitat de Catalunya. The CIBER of Rare Diseases (CIBERER) is an initiative of the ISCIII. CS received the FI grant from Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) de la Generalitat de Cataluny

    DYRK1A overexpression alters cognition and neural-related proteomic pathways in the hippocampus that are rescued by green tea extract and/or environmental enrichment

    No full text
    Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. We recently discovered that green tea extracts containing epigallocatechin-3-gallate (EGCG) improve cognition in mice transgenic for Dyrk1a (TgDyrk1A) and in a trisomic DS mouse model (Ts65Dn). Interestingly, paired with cognitive stimulation, green tea has beneficial pro-cognitive effects in DS individuals. Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase 1A (DYRK1A) is a major candidate to explain the cognitive phenotypes of DS, and inhibiting its activity is a promising pro-cognitive therapy. DYRK1A kinase activity can be normalized in the hippocampus of transgenic DYRK1A mice administering green tea extracts, but also submitting the animals to environmental enrichment (EE). However, many other mechanisms could also explain the pro-cognitive effects of green tea extracts and EE. To underpin the overall alterations arising upon DYRK1A overexpression and the molecular processes underneath the pro-cognitive effects, we used quantitative proteomics. We investigated the hippocampal (phospho)proteome in basal conditions and after treatment with a green tea extract containing EGCG and/or EE in TgDyrk1A and control mice. We found that Dyrk1A overexpression alters protein and phosphoprotein levels of key postsynaptic and plasticity-related pathways and that these alterations were rescued upon the cognitive enhancer treatments.The work has received financial support from MINECO (SAF2016-79956-R), Jerome Lejeune Foundation (Project #1347 “Elucidation of the mechanism of action of epigallocatechin-3-gallate as a therapeutic agent on the cognitive phenotype in Down Syndrome mice models”), and the NIH 1R01EB 028159-01 to MD, the Centre for Genomic Regulation Severo Ochoa excellence grant (SEV-2012-0208), the Centro de Investigación Biomédica en Red Enfermedades Raras (CIBER) of Rare Diseases; “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (Grups consolidats SGR 2016/1125, and 2017SGR595); and the “Centro para el Desarrollo Tecnológico Industrial CDTI.” The CRG/UPF Proteomics Unit is part of the Spanish Infrastructure for Omics Technologies (ICTS OmicsTech) and it is a member of Proteored, PRB3, and is supported by grant PT17/0019, of the PE I+D+i 2013–2016, funded by ISCIII. ID received funding from the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Program (FP7/2007-2013) under REA grant agreement n° 608959. MO received an FPI Severo Ochoa Doctoral Fellowship from the Spanish Ministry of Economy and Finance (MINECO) SVP-2013-068022 during the period 2014–2018 and a short research international stay fellowship (EEBB-I-16-11305)

    Re-establishment of the epigenetic state and rescue of kinome deregulation in Ts65Dn mice upon treatment with green tea extract and environmental enrichment

    No full text
    Down syndrome (DS) is the main genetic cause of intellectual disability due to triplication of human chromosome 21 (HSA21). Although there is no treatment for intellectual disability, environmental enrichment (EE) and the administration of green tea extracts containing epigallocatechin-3-gallate (EGCG) improve cognition in mouse models and individuals with DS. Using proteome, and phosphoproteome analysis in the hippocampi of a DS mouse model (Ts65Dn), we investigated the possible mechanisms underlying the effects of green tea extracts, EE and their combination. Our results revealed disturbances in cognitive-related (synaptic proteins, neuronal projection, neuron development, microtubule), GTPase/kinase activity and chromatin proteins. Green tea extracts, EE, and their combination restored more than 70% of the phosphoprotein deregulation in Ts65Dn, and induced possible compensatory effects. Our downstream analyses indicate that re-establishment of a proper epigenetic state and rescue of the kinome deregulation may contribute to the cognitive rescue induced by green tea extracts.This work was supported by the Fondation Jérôme Lejeune Foundation (Project #1347 “Elucidation of the mechanism of action of epigallocatechin-3-gallate as a therapeutic agent on the cognitive phenotype in Down Syndrome mice models”), Agencia Estatal de Investigación (AEI) (PID2019-110755RB-I00/AEI/10.13039/501100011033), H2020 SC1 Gene overdosage and comorbidities during the early lifetime in Down Syndrome GO-DS21-848077, Fundació La Marató De TV3 (201620-31_MDierssen), EU (JPND HEROES (tHE cRossroad Of dEmentia Syndromes), NIH (Grant Number: 1R01EB 028159-01). The CRG is a Center of Excellence Severo Ochoa. The CIBER of Rare Diseases is an initiative of the ISCIII. The laboratories of M. Dierssen and E. Sabidó are supported by DIUE de la Generalitat de Catalunya (Grups consolidats 2017SGR926, 2017SGR595). The CRG/UPF Proteomics Unit is part of the Spanish Infrastructure for Omics Technologies (ICTS OmicsTech) and it is a member of the ProteoRed PRB3 consortium which is supported by grant PT17/0019 of the PE I+D+i 2013-2016 from the Instituto de Salud Carlos III (ISCIII) and ERDF. We also acknowledge the support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme/Generalitat de Catalunya
    corecore