8 research outputs found
Strong floristic distinctiveness across Neotropical successional forests
Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained
Nitrogen fertilization and soil management of winter common bean crop Manejo do solo e adubação nitrogenada em feijoeiro de inverno
The adoption of appropriate cultural management, which includes nitrogen fertilization and soil tillage system, is very important to increase the efficiency of plant in the utilization of available resource. This research work was conducted for three years aiming at evaluating the effect of sidedressing nitrogen application (0, 25, 50, 75, and 100 kg ha-1) on winter bean crop under different systems of soil management (conventional, minimal, and no-tillage systems). The experimental design was a randomized block arranged in strips relative to tillage systems, with random distribution of nitrogen doses into each strip, with four replications. Grain yield was affected by nitrogen rates and significant increases were obtained with the application of 75 to 100 kg N ha-1. Soil management did not affect grain yield, although the "minimum system" provided better results in the two first years.<br>A adoção de manejo cultural adequado, dentro do qual se insere a prática da adubação e do preparo do solo, Ă© importante no sentido de aumentar a eficiĂŞncia da planta na utilização dos recursos disponĂveis. Este trabalho foi desenvolvido durante trĂŞs anos, objetivando avaliar, no feijoeiro irrigado (Phaseolus vulgaris) "de inverno", o efeito da aplicação de doses de nitrogĂŞnio em cobertura (0, 25, 50, 75 e 100 kg ha-1), sob diferentes sistemas de preparo de solo (convencional, mĂnimo e direto). O delineamento estatĂstico utilizado foi em blocos casualisados dispostos em faixas para os sistemas de preparo do solo, com casualização dentro destes para as doses de nitrogĂŞnio, com quatro repetições. Foram avaliados: florescimento pleno, matĂ©ria seca de plantas, nĂşmero de vagens e de grĂŁos por planta, nĂşmero de grĂŁos por vagem, massa de 100 grĂŁos, ciclo, rendimento de grĂŁos e teor de nitrogĂŞnio nas plantas. O rendimento de grĂŁos foi influenciado pelas doses de nitrogĂŞnio e incrementos significativos foram obtidos com a aplicação de 75 a 100 kg N ha-1. Os sistemas de preparo do solo nĂŁo influenciaram no rendimento de grĂŁos, embora o "cultivo mĂnimo" tenha se sobressaĂdo nos dois primeiros anos
Biodiversity recovery of Neotropical secondary forests
Unidad de excelencia MarĂa de Maeztu MdM-2015-0552Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes
Multidimensional tropical forest recovery
Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation
Multidimensional tropical forest recovery
Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation
Strong floristic distinctiveness across Neotropical successional forests
Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
Aim
Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.
Location
Amazonia.
Taxon
Angiosperms (Magnoliids; Monocots; Eudicots).
Methods
Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.
Results
In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.
Main Conclusion
Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions